Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Science ; 382(6671): 719-725, 2023 11 10.
Article En | MEDLINE | ID: mdl-37943924

Assembly of cell wall polysaccharides into specific patterns is required for plant growth. A complex of RAPID ALKALINIZATION FACTOR 4 (RALF4) and its cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN 8 (LRX8)-interacting protein is crucial for cell wall integrity during pollen tube growth, but its molecular connection with the cell wall is unknown. Here, we show that LRX8-RALF4 complexes adopt a heterotetrametric configuration in vivo, displaying a dendritic distribution. The LRX8-RALF4 complex specifically interacts with demethylesterified pectins in a charge-dependent manner through RALF4's polycationic surface. The LRX8-RALF4-pectin interaction exerts a condensing effect, patterning the cell wall's polymers into a reticulated network essential for wall integrity and expansion. Our work uncovers a dual structural and signaling role for RALF4 in pollen tube growth and in the assembly of complex extracellular polymers.


Arabidopsis Proteins , Arabidopsis , Cell Wall , Pectins , Pollen Tube , Arabidopsis/growth & development , Arabidopsis/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Pectins/chemistry , Pectins/metabolism , Peptides/metabolism , Pollen Tube/growth & development , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism
2.
Development ; 147(11)2020 05 29.
Article En | MEDLINE | ID: mdl-32376679

The VAPYRIN (VPY) gene in Medicago truncatula and Petunia hybrida is required for arbuscular mycorrhizal (AM) symbiosis. The moss Physcomitrella patens has a close homolog (VPY-like, VPYL), although it does not form AM. Here, we explore the phylogeny of VPY and VPYL in land plants, and study the expression and developmental function of VPYL in Ppatens We show that VPYL is expressed primarily in the protonema, the early filamentous stage of moss development, and later in rhizoids arising from the leafy gametophores and in adult phyllids. Knockout mutants have specific phenotypes in branching of the protonema and in cell division of the leaves (phyllids) in gametophores. The mutants are responsive to auxin and strigolactone, which are involved in regulation of protonemal branching, indicating that hormonal signaling in the mutants is not affected in hormonal signaling. Taken together, these results suggest that VPYL exerts negative regulation of protonemal branching and cell division in phyllids. We discuss VPY and VPYL phylogeny and function in land plants in the context of AM symbiosis in angiosperms and development in the moss.


Bryopsida/growth & development , Plant Proteins/metabolism , Bryopsida/metabolism , Evolution, Molecular , Gene Expression Regulation, Plant , Heterocyclic Compounds, 3-Ring/metabolism , Indoleacetic Acids/metabolism , Lactones/metabolism , Mutagenesis , Phenotype , Phylogeny , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/classification , Plant Proteins/genetics , Plant Stems/growth & development , Plant Stems/metabolism , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Signal Transduction
...