Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 390(2): 260-275, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38858089

RESUMEN

Radiation therapy, a standard treatment option for many cancer patients, induces DNA double-strand breaks (DSBs), leading to cell death. Ataxia telangiectasia mutated (ATM) kinase is a key regulator of DSB repair, and ATM inhibitors are being explored as radiosensitizers for various tumors, including primary and metastatic brain tumors. Efficacy of radiosensitizers for brain tumors may be influenced by a lack of effective drug delivery across the blood-brain barrier. The objective of this study was to evaluate the systemic pharmacokinetics and mechanisms that influence the central nervous system (CNS) distribution of WSD0628, a novel and potent ATM inhibitor, in the mouse. Further, we have used these observations to form the basis of predicting effective exposures for clinical application. We observed a greater than dose proportional increase in exposure, likely due to saturation of clearance processes. Our results show that WSD0628 is orally bioavailable and CNS penetrant, with unbound partitioning in CNS (i.e., unbound tissue partition coefficient) between 0.15 and 0.3. CNS distribution is not limited by the efflux transporters P-glycoprotein and breast cancer resistant protein. WSD0628 is distributed uniformly among different brain regions. Thus, WSD0628 has favorable pharmacokinetic properties and potential for further exploration to determine the pharmacodynamics-pharmacokinetics efficacy relationship in CNS tumors. This approach will provide critical insights for the clinical translation of WSD0628 for the treatment of primary and secondary brain tumors. SIGNIFICANCE STATEMENT: This study evaluates the preclinical systemic pharmacokinetics, dose proportionality, and mechanisms influencing CNS distribution of WSD0628, a novel ATM inhibitor for the treatment of brain tumors. Results indicate that WSD0628 is orally bioavailable and CNS penetrant without efflux transporter liability. We also observed a greater than dose proportional increase in exposure in both the plasma and brain. These favorable pharmacokinetic properties indicate WSD0628 has potential for further exploration for use as a radiosensitizer in the treatment of brain tumors.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias Encefálicas , Fármacos Sensibilizantes a Radiaciones , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Ratones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Masculino , Femenino , Relación Dosis-Respuesta a Droga , Distribución Tisular , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2
2.
Clin Cancer Res ; 30(15): 3287-3297, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38743766

RESUMEN

PURPOSE: Antibody-drug conjugates (ADC) are targeted therapies with robust efficacy in solid cancers, and there is intense interest in using EGFR-specific ADCs to target EGFR-amplified glioblastoma (GBM). Given GBM's molecular heterogeneity, the bystander activity of ADCs may be important for determining treatment efficacy. In this study, the activity and toxicity of two EGFR-targeted ADCs with similar auristatin toxins, Losatuxizumab vedotin (ABBV-221) and Depatuxizumab mafodotin (Depatux-M), were compared in GBM patient-derived xenografts (PDX) and normal murine brain following direct infusion by convection-enhanced delivery (CED). EXPERIMENTAL DESIGN: EGFRviii-amplified and non-amplified GBM PDXs were used to determine in vitro cytotoxicity, in vivo efficacy, and bystander activities of ABBV-221 and Depatux-M. Nontumor-bearing mice were used to evaluate the pharmacokinetics (PK) and toxicity of ADCs using LC-MS/MS and immunohistochemistry. RESULTS: CED improved intracranial efficacy of Depatux-M and ABBV-221 in three EGFRviii-amplified GBM PDX models (Median survival: 125 to >300 days vs. 20-49 days with isotype control AB095). Both ADCs had comparable in vitro and in vivo efficacy. However, neuronal toxicity and CD68+ microglia/macrophage infiltration were significantly higher in brains infused with ABBV-221 with the cell-permeable monomethyl auristatin E (MMAE), compared with Depatux-M with the cell-impermeant monomethyl auristatin F. CED infusion of ABBV-221 into the brain or incubation of ABBV-221 with normal brain homogenate resulted in a significant release of MMAE, consistent with linker instability in the brain microenvironment. CONCLUSIONS: EGFR-targeting ADCs are promising therapeutic options for GBM when delivered intratumorally by CED. However, the linker and payload for the ADC must be carefully considered to maximize the therapeutic window.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Efecto Espectador , Receptores ErbB , Glioblastoma , Inmunoconjugados , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Inmunoconjugados/farmacocinética , Inmunoconjugados/farmacología , Inmunoconjugados/administración & dosificación , Humanos , Receptores ErbB/antagonistas & inhibidores , Ratones , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacocinética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Femenino
3.
J Pharmacol Exp Ther ; 387(3): 315-327, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37827699

RESUMEN

Achieving adequate exposure of the free therapeutic agent at the target is a critical determinant of efficacious chemotherapy. With this in mind, a major challenge in developing therapies for central nervous system (CNS) tumors is to overcome barriers to delivery, including the blood-brain barrier (BBB). Panobinostat is a nonselective pan-histone deacetylase inhibitor that is being tested in preclinical and clinical studies, including for the treatment of pediatric medulloblastoma, which has a propensity for leptomeningeal spread and diffuse midline glioma, which can infiltrate into supratentorial brain regions. In this study, we examined the rate, extent, and spatial heterogeneity of panobinostat CNS distribution in mice. Transporter-deficient mouse studies show that panobinostat is a dual substrate of P-glycoprotein (P-gp) and breast cancer resistant protein (Bcrp), which are major efflux transporters expressed at the BBB. The CNS delivery of panobinostat was moderately limited by P-gp and Bcrp, and the unbound tissue-to-plasma partition coefficient of panobinostat was 0.32 and 0.21 in the brain and spinal cord in wild-type mice. In addition, following intravenous administration, panobinostat demonstrated heterogeneous distribution among brain regions, indicating that its efficacy would be influenced by tumor location or the presence and extent of leptomeningeal spread. Simulation using a compartmental BBB model suggests inadequate exposure of free panobinostat in the brain following a recommended oral dosing regimen in patients. Therefore, alternative approaches to CNS delivery may be necessary to have adequate exposure of free panobinostat for the treatment of a broad range of pediatric brain tumors. SIGNIFICANCE STATEMENT: This study shows that the central nervous system (CNS) penetration of panobinostat is limited by P-gp and Bcrp, and its efficacy may be limited by inadequate distribution to the tumor. Panobinostat has heterogeneous distribution into various brain regions, indicating that its efficacy might depend on the anatomical location of the tumors. These distributional parameters in the mouse CNS can inform both preclinical and clinical trial study design and may guide treatment for these devastating brain tumors in children.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Neoplasias Encefálicas , Niño , Humanos , Animales , Ratones , Panobinostat/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/metabolismo , Sistema Nervioso Central/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Proteínas de Transporte de Membrana/metabolismo
4.
Pharm Res ; 40(11): 2731-2746, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37589827

RESUMEN

The lack of effective chemotherapeutic agents for the treatment of brain tumors is a serious unmet medical need. This can be attributed, in part, to inadequate delivery through the blood-brain barrier (BBB) and the tumor-cell barrier, both of which have active efflux transporters that can restrict the transport of many potentially effective agents for both primary and metastatic brain tumors. This review briefly summarizes the components and function of the normal BBB with respect to drug penetration into the brain and the alterations in the BBB due to brain tumor that could influence drug delivery. Depending on what is rate-limiting a compound's distribution, the limited permeability across the BBB and the subsequent delivery into the tumor cell can be greatly influenced by efflux transporters and these are discussed in some detail. Given these complexities, it is necessary to quantify the extent of brain distribution of the active (unbound) drug to compare across compounds and to inform potential for use against brain tumors. In this regard, the metric, Kp,uu, a brain-to-plasma unbound partition coefficient, is examined and its current use is discussed. However, the extent of active drug delivery is not the only determinant of effective therapy. In addition to Kp,uu, drug potency is an important parameter that should be considered alongside drug delivery in drug discovery and development processes. In other words, to answer the question - How much is enough? - one must consider how much can be delivered with how much needs to be delivered.


Asunto(s)
Neoplasias Encefálicas , Encéfalo , Humanos , Barrera Hematoencefálica , Proteínas de Transporte de Membrana , Neoplasias Encefálicas/tratamiento farmacológico , Transporte Biológico , Preparaciones Farmacéuticas
5.
J Clin Pharmacol ; 63(12): 1417-1429, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37507728

RESUMEN

Pharmacokinetic (PK) comparisons between therapeutic biologics have largely been based on the total area under the concentration-time curve (AUC) and the maximum concentration (Cmax ). For biologics with a long half-life, a PK comparability study may be long in duration and costly to conduct. The goal of this study was to evaluate whether a truncated AUC (tAUC) can be used to assess PK comparability when bridging prefilled syringe (PFS) and autoinjector (AI) treatment options for biologics with a long half-life. Fifteen biologics license applications (BLAs) were included to determine the concordance and geometric percent coefficient of variation (%CV) between tAUCs evaluated on days 7, 14, 21, and 28 and AUC evaluated to infinity (AUC0-inf ). Concordance is established if the tAUCs are comparable with AUC0-inf . Trial simulation was performed to examine the effect of the absorption rate constant (ka ) and sample size on the concordance of tAUCs. The tAUCs evaluated on day 14, 21, and 28 had 100% concordance with AUC0-inf for all 15 BLAs. The concordance of tAUC evaluated at day 7 was 87.5%. Based on the trial simulation, tAUC evaluated to day 28 post-dose can achieve high concordance (≥85%) for biologics exhibiting linear or nonlinear elimination with a ka of ≥0.1/day and with a sample size of 70 subjects per arm. tAUC appears to be a promising alternative PK measure, relative to AUC0-inf , for PK comparability assessments.


Asunto(s)
Biosimilares Farmacéuticos , Jeringas , Humanos , Equivalencia Terapéutica , Área Bajo la Curva , Biosimilares Farmacéuticos/farmacocinética , Inyecciones Subcutáneas
6.
Bioinformation ; 19(13): 1383-1387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38415028

RESUMEN

Mobile dental vehicle (MDVs) can be adopted to address the oral healthcare needs of different populations. Therefore, it is of interest to evaluate mobile dental clinic program in providing oral health services to underserved rural communities. A 2 x 2.5 meter box trailer is used by the UN, and it can be carried by a vehicle with all-wheel drive for all types of weather. There was a small box trailer with its weather proof canvas cover extended, changing it into four dental operators and an integrated waiting and teaching space. Clinical examination, scaling, polishing, health education, individual and group teaching in dental hygiene, fluoride applications, fissure sealants, amalgam and composite restorations, extractions, and minor oral surgery were all supplied at no cost to the patients. In a longitudinal study of 3 years in underserved rural areas, a total of 6326 patients were provided different dental treatments. It was found that 93.3% patients did not undergo any dental treatment in the past.

7.
J Intern Med ; 292(1): 3-30, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35040235

RESUMEN

Brain tumours have a poor prognosis and lack effective treatments. The blood-brain barrier (BBB) represents a major hurdle to drug delivery to brain tumours. In some locations in the tumour, the BBB may be disrupted to form the blood-brain tumour barrier (BBTB). This leaky BBTB enables diagnosis of brain tumours by contrast enhanced magnetic resonance imaging; however, this disruption is heterogeneous throughout the tumour. Thus, relying on the disrupted BBTB for achieving effective drug concentrations in brain tumours has met with little clinical success. Because of this, it would be beneficial to design drugs and drug delivery strategies to overcome the 'normal' BBB to effectively treat the brain tumours. In this review, we discuss the role of BBB/BBTB in brain tumour diagnosis and treatment highlighting the heterogeneity of the BBTB. We also discuss various strategies to improve drug delivery across the BBB/BBTB to treat both primary and metastatic brain tumours. Recognizing that the BBB represents a critical determinant of drug efficacy in central nervous system tumours will allow a more rapid translation from basic science to clinical application. A more complete understanding of the factors, such as BBB-limited drug delivery, that have hindered progress in treating both primary and metastatic brain tumours, is necessary to develop more effective therapies.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Barrera Hematoencefálica/patología , Encéfalo/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos/métodos , Humanos
8.
J Pharmacol Exp Ther ; 380(1): 34-46, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34663676

RESUMEN

Novel combinations of specific opioid agonists like loperamide and oxymorphindole targeting the µ- and δ-opioid receptors, respectively, have shown increased potency with minimized opioid-associated risks. However, whether their interaction is pharmacokinetic or pharmacodynamic in nature has not been determined. This study quantitatively determined whether these drugs have a pharmacokinetic interaction that alters systemic disposition or central nervous system (CNS) distribution. We performed intravenous and oral in vivo pharmacokinetic assessments of both drugs after discrete dosing and administration in combination to determine whether the combination had any effect on systemic pharmacokinetic parameters or CNS exposure. Drugs were administered at 5 or 10 mg/kg i.v. or 30 mg/kg orally to institute for cancer research (ICR) mice and 5 mg/kg i.v. to Friend leukemia virus strain B mice of the following genotypes: wild-type, breast cancer resistance protein (Bcrp-/- ) (Bcrp knockout), Mdr1a/b-/- [P-glycoprotein (P-gp) knockout], and Bcrp-/- Mdr1a/b-/- (triple knockout). In the combination, clearance of oxymorphindole (OMI) was reduced by approximately half, and the plasma area under the concentration-time curve (AUC) increased. Consequently, brain and spinal cord AUCs for OMI in the combination also increased proportionately. Both loperamide and OMI are P-gp substrates, but administration of the two drugs in combination does not alter efflux transport at the CNS barriers. Because OMI alone shows appreciable brain penetration but little therapeutic efficacy on its own, and because loperamide's CNS distribution is unchanged in the combination, the mechanism of action for the increased potency of the combination is most likely pharmacodynamic and most likely occurs at receptors in the peripheral nervous system. This combination has favorable characteristics for future development. SIGNIFICANCE STATEMENT: Opioids have yet to be replaced as the most effective treatments for moderate-to-severe pain and chronic pain, but their side effects are dangerous. Combinations of opioids with peripheral activity, such as loperamide and oxymorphindole, would be valuable in that they are effective at much lower doses and have reduced risks for dangerous side effects because the µ-opioid receptor agonist is largely excluded from the CNS.


Asunto(s)
Sistema Nervioso Central/metabolismo , Loperamida/farmacocinética , Morfolinas/farmacocinética , Receptores Opioides/agonistas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Animales , Combinación de Medicamentos , Sinergismo Farmacológico , Femenino , Genotipo , Loperamida/administración & dosificación , Masculino , Ratones , Ratones Endogámicos ICR , Morfolinas/administración & dosificación , Distribución Tisular
9.
Pharmaceutics ; 12(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322488

RESUMEN

Effective treatments for brain tumors remain one of the most urgent and unmet needs in modern oncology. This is due not only to the presence of the neurovascular unit/blood-brain barrier (NVU/BBB) but also to the heterogeneity of barrier alteration in the case of brain tumors, which results in what is referred to as the blood-tumor barrier (BTB). Herein, we discuss this heterogeneity, how it contributes to the failure of novel pharmaceutical treatment strategies, and why a "whole brain" approach to the treatment of brain tumors might be beneficial. We discuss various methods by which these obstacles might be overcome and assess how these strategies are progressing in the clinic. We believe that by approaching brain tumor treatment from this perspective, a new paradigm for drug delivery to brain tumors might be established.

10.
Drug Deliv Transl Res ; 10(1): 70-82, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31407270

RESUMEN

Supersaturated drug delivery systems are commonly used to address the problems of poor aqueous solubility posed by most of the active pharmaceutical ingredients (APIs). However, the supersaturated systems are highly unstable due to their high free energy levels and demonstrate a tendency to precipitate. Understanding the crystallization tendency based on the mechanisms of crystallization, that is nucleation and crystal growth, is imperative to design formulation strategies and select appropriate precipitation inhibitors. This study aims to provide a classification system, based on both the nucleation and crystal growth tendency in the solution state of 60 APIs and nutraceuticals (in absence of polymer) from their desupersaturation profiles monitored by UV-Visible spectroscopy. The APIs and nutraceuticals are divided into four classes based on their induction time (tind) and crystal growth rate as fast nucleators-fast crystal growth (class I), fast nucleators-slow crystal growth (class II), slow nucleators-fast crystal growth (class III) and slow nucleators-slow crystal growth (class IV). Most of the molecules fall in the class I and class IV. An easy-to-use protocol for nucleation and crystal growth studies has been optimized. This protocol will find application to assess the crystallization tendency of the molecules in the preliminary screening stages, enabling appropriate formulation strategies to inhibit crystallization.


Asunto(s)
Suplementos Dietéticos/clasificación , Preparaciones Farmacéuticas/química , Cristalización , Composición de Medicamentos , Preparaciones Farmacéuticas/clasificación , Solubilidad
11.
J Pharmacol Exp Ther ; 370(2): 231-241, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31175219

RESUMEN

Mesenchymal stem cells (MSCs) have previously demonstrated considerable promise in regenerative medicine based on their ability to proliferate and differentiate into cells of different lineages. More recently, there has been a significant interest in using MSCs as cellular vehicles for targeted cancer therapy by exploiting their tumor homing properties. Initial studies focused on using genetically modified MSCs for targeted delivery of various proapoptotic, antiangiogenic, and therapeutic proteins to a wide variety of tumors. However, their use as drug delivery vehicles has been limited by poor drug load capacity. This review discusses various strategies for the nongenetic modification of MSCs that allows their use in tumor-targeted delivery of small molecule chemotherapeutic agents. SIGNIFICANCE STATEMENT: There has been considerable interest in exploiting the tumor homing potential of MSCs to develop them as a vehicle for the targeted delivery of cytotoxic agents to tumor tissue. The inherent tumor-tropic and drug-resistant properties make MSCs ideal carriers for toxic payload. While significant progress has been made in the area of the genetic modification of MSCs, studies focused on identification of molecular mechanisms that contribute to the tumor tropism along with optimization of the engineering conditions can further improve their effectiveness as drug delivery vehicles.


Asunto(s)
Ingeniería Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre Mesenquimatosas/citología , Neoplasias/terapia , Animales , Humanos , Neoplasias/patología , Investigación Biomédica Traslacional
12.
AAPS PharmSciTech ; 20(2): 58, 2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30623265

RESUMEN

Aldara™ (5% w/w imiquimod) topical cream is approved by the US FDA for the treatment of superficial basal cell carcinoma. However, the cream formulation suffers from dose variability, low drug availability due to the incomplete release, and poor patient compliance. To achieve sustained and complete release of imiquimod, chitosan films were prepared by casting using propylene glycol as a plasticizer. Chitosan films had appropriate physicochemical characteristics for wound dressing and excellent content uniformity and maintained the original physical form of imiquimod. Films were capable of releasing a defined dose of imiquimod over a period of 7 days. The bioactivity of imiquimod was not affected by its entrapment in chitosan matrix as indicated by the results of in vitro growth inhibition assay. In addition, the film formulation showed significantly (p Ë‚ 0.05) higher drug accumulation in the skin when compared to commercial cream formulation.


Asunto(s)
Quitosano/química , Sistemas de Liberación de Medicamentos/métodos , Diseño de Fármacos , Imiquimod/química , Absorción Cutánea/efectos de los fármacos , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacocinética , Administración Tópica , Quitosano/administración & dosificación , Quitosano/farmacocinética , Liberación de Fármacos/efectos de los fármacos , Liberación de Fármacos/fisiología , Humanos , Imiquimod/administración & dosificación , Imiquimod/farmacocinética , Técnicas de Cultivo de Órganos , Absorción Cutánea/fisiología
13.
Asian J Pharm Sci ; 14(3): 248-264, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-32104456

RESUMEN

Cellulose derivatives have gained immense popularity as stabilizers for amorphous solid dispersion owing to their diverse physicochemical properties. More than 20 amorphous solid dispersion-based products that have been approved for marketing consist of cellulose derivatives as stabilizers, thus highlighting their importance in generation of amorphous solid dispersions. These polymers offer numerous advantages like drug solubilization, crystallization inhibition and improvement in release patterns of drugs. Exploring their potential and exploiting their chemistry and pH responsive behaviour have led to the synthesis of new derivatives that has broadened the scope of the use of cellulose derivatives in amorphous formulation development. The present review aims to provide an overview of different mechanisms by which these cellulose derivatives inhibit the crystallization of drugs in the solid state and from supersaturated solution. A summary of different categories of cellulose derivatives along with the newly explored polymers has been provided. A special segment on strengths, weaknesses, opportunities, and threats (SWOT) analysis and critical quality attributes (CQAs) which affect the performance of the cellulose based amorphous solid dispersion will aid the researchers in identifying the major challenges in the development of cellulose based solid dispersion and serve as a guide for further formulation development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA