Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Pharm Des ; 29(41): 3324-3339, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111115

RESUMEN

INTRODUCTION: In the present study, we aimed to investigate the extraction and identification of the potential phytochemicals from the Methanolic Extract of Dryopteris ramosa (MEDR) using GC-MS profiling for validating the traditional uses of MEDR its efficacy in inflammations by using in-vitro, in-vivo and in silico approaches in anti-inflammatory models. METHODS: GC-MS analysis confirmed the presence of a total of 59 phytochemical compounds. The human red blood cells (HRBC) membrane stabilization assay and heat-induced hemolysis method were used as in-vitro anti-inflammatory activity of the extract. The in-vivo analysis was carried out through the Xylene-induced mice ear oedema method. It was found that MEDR at a concentration of 20 µg, 30 µg, and 40 µg showed 35.45%, 36.01%, and 36.33% protection to HRBC in a hypotonic solution, respectively. At the same time, standard Diclofenac at 30 µg showed 45.31% protection of HRBC in a hypotonic solution. RESULTS: The extract showed inhibition of 25.32%, 26.53%, and 33.31% cell membrane lysis at heating at 20 µg, 30 µg, and 40 µg, respectively. In comparison, standard Diclofenac at 30 µg showed 50.49% inhibition of denaturation to heat. Methanolic extract of the plant exhibited momentous inhibition in xylene-induced ear oedema in mice treated with 30 µg extract were 47.2%, 63.4%, and 78.8%, while inhibition in mice ear oedema treated with 60 µg extract was 34.7%, 43.05%, 63.21% and reduction in ear thickness of standard drug were 57.3%, 59.54%, 60.42% recorded at the duration of 1, 4 and 24 hours of inflammation. Molecular docking and simulations were performed to validate the anti-inflammatory role of the phytochemicals that revealed five potential phytochemicals i.e. Stigmasterol,22,23dihydro, Heptadecane,8methyl, Pimaricacid, Germacrene and 1,3Cyclohexadiene,_5(1,5dimethyl4hexenyl)-2methyl which revealed potential or significant inhibitory effects on cyclooxygenase-2 (COX-2), tumour necrosis factor (TNF-α), and interleukin (IL-6) in the docking analysis. CONCLUSION: The outcome of the study signifies that MEDR can offer a new prospect in the discovery of a harmonizing and alternative therapy for inflammatory disease conditions.


Asunto(s)
Dryopteris , Ratones , Humanos , Animales , Xilenos/efectos adversos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Simulación del Acoplamiento Molecular , Diclofenaco/efectos adversos , Soluciones Hipotónicas/efectos adversos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Metanol/efectos adversos , Factor de Necrosis Tumoral alfa
2.
Front Nutr ; 10: 1168095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621738

RESUMEN

Dendropanax morbifera (DM), a medicinal plant, is rich in polyphenols and commonly used to treat cancer, inflammation, and thrombosis. However, to date, no study has been conducted on DM regarding the enormous drift of secondary metabolites of plants in different regions of the Republic of Korea and their effects on antiobesity, to explore compounds that play an important role in two major obesity-related pathways. Here, we present an in-depth study on DM samples collected from three regions of the Republic of Korea [Jeju Island (DMJ), Bogildo (DMB), and Jangheung (DMJG)]. We used high-performance liquid chromatography (HPLC) and multivariate component analyses to analyze polyphenol contents (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, and rutin), followed by discrimination of the samples in DMJG using single nucleotide polymorphism and chemometric analysis. In silico and in vitro evaluation of major compounds found in the plant extract on two major anti-obesity pathways (adipogenesis and thermogenesis) was carried out. Furthermore, two extraction methods (Soxhlet and ultrasound-assisted extraction) were used to understand which method is better and why. Upon quantifying plant samples in three regions with the polyphenols, DMJG had the highest content of polyphenols. The internal transcribed region (ITS) revealed a specific gel-based band for the authentication of DMJG. PCA and PLS-DA revealed the polyphenol's discriminative power of the region DMJG. The anti-obesity effects of plant extracts from the three regions were related to their polyphenol contents, with DMJG showing the highest effect followed by DMJ and DMB. Ultrasound-assisted extraction yielded a high number of polyphenols compared to that of the Soxhlet method, which was supported by scanning electron microscopy. The present work encourages studies on plants rich in secondary metabolites to efficiently use them for dietary and therapeutic purposes.

3.
Microorganisms ; 11(8)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37630585

RESUMEN

Transient and prolonged waterlogging stress (WS) stimulates ethylene (ET) generation in plants, but their reprogramming is critical in determining the plants' fate under WS, which can be combated by the application of symbiotically associated beneficial microbes that induce resistance to WS. The present research was rationalized to explore the potential of the newly isolated 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing fungal endophytic consortium of Aspergillus nomiae (MA1) and Aspergillus fumigatus (MA4) on maize growth promotion under WS. MA1 and MA4 were isolated from the seeds of Moringa oleifera L., which ably produced a sufficient amount of IAA, proline, phenols, and flavonoids. MA1 and MA4 proficiently colonized the root zone of maize (Zea mays L.). The symbiotic association of MA1 and MA4 promoted the growth response of maize compared with the non-inoculated plants under WS stress. Moreover, MA1- and MA4-inoculated maize plants enhanced the production of total soluble protein, sugar, lipids, phenolics, and flavonoids, with a reduction in proline content and H2O2 production. MA1- and MA4-inoculated maize plants showed an increase in the DPPH activity and antioxidant enzyme activities of CAT and POD, along with an increased level of hormonal content (GA3 and IAA) and decreased ABA and ACC contents. Optimal stomatal activity in leaf tissue and adventitious root formation at the root/stem junction was increased in MA1- and MA4-inoculated maize plants, with reduced lysigenous aerenchyma formation, ratio of cortex-to-stele, water-filled cells, and cell gaps within roots; increased tight and round cells; and intact cortical cells without damage. MA1 and MA4 induced a reduction in deformed mesophyll cells, and deteriorated epidermal and vascular bundle cells, as well as swollen metaxylem, phloem, pith, and cortical area, in maize plants under WS compared with control. Moreover, the transcript abundance of ethylene-responsive gene ZmEREB180, responsible for the induction of the WS tolerance in maize, showed optimally reduced expression sufficient for induction in WS tolerance, in MA1- and MA4-inoculated maize plants under WS compared with the non-inoculated control. The existing research supported the use of MA1 and MA4 isolates for establishing the bipartite mutualistic symbiosis in maize to assuage the adverse effects of WS by optimizing ethylene production.

4.
Plants (Basel) ; 12(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37111926

RESUMEN

Abiotic stressors are global limiting constraints for plant growth and development. The most severe abiotic factor for plant growth suppression is salt. Among many field crops, maize is more vulnerable to salt, which inhibits the growth and development of plants and results in low productivity or even crop loss under extreme salinity. Consequently, comprehending the effects of salt stress on maize crop improvement, while retaining high productivity and applying mitigation strategies, is essential for achieving the long-term objective of sustainable food security. This study aimed to exploit the endophytic fungal microbe; Aspergillus welwitschiae BK isolate for the growth promotion of maize under severe salinity stress. Current findings showed that salt stress (200 mM) negatively affected chlorophyll a and b, total chlorophyll, and endogenous IAA, with enhanced values of chlorophyll a/b ratio, carotenoids, total protein, total sugars, total lipids, secondary metabolites (phenol, flavonoids, tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), proline content, and lipid peroxidation in maize plants. However, BK inoculation reversed the negative impact of salt stress by rebalancing the chlorophyll a/b ratio, carotenoids, total protein, total sugars, total lipids, secondary metabolites (phenol, flavonoids, tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), and proline content to optimal levels suitable for growth promotion and ameliorating salt stress in maize plants. Furthermore, maize plants inoculated with BK under salt stress had lower Na+, Cl- concentrations, lower Na+/K+ and Na+/Ca2+ ratios, and higher N, P, Ca2+, K+, and Mg2+ content than non-inoculated plants. The BK isolate improved the salt tolerance by modulating physiochemical attributes, and the root-to-shoot translocation of ions and mineral elements, thereby rebalancing the Na+/K+, Na+/Ca2+ ratio of maize plants under salt stress.

5.
Front Chem ; 10: 994895, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505740

RESUMEN

Nanotechnology is one of the advanced technologies that have almost universal implications in every field of science. The importance is due to the unique properties of nanoparticles; however, green synthesized nanoparticles are considered eco-friendly. The current project was rationalized to prepare green-synthesized biogenic Periploca aphylla Dcne. silver nanoparticles (Pe-AgNPs) and poly (ethylene glycol) methacrylate coated AgNPs nanocomposites (PEGMA-AgNPs) with higher potential for their application in plant tissue culture for enhancing the biomass of Stevia rebaudiana calli. The increased biomass accumulation (17.61 g/3 plates) was observed on a medium containing virgin Pe-AgNPs 40th days after incubation, while the maximum increase was found by supplementing virgin Pe-AgNPs and PEGMA capped AgNPs (19.56 g/3 plates), compared with control (12.01 g/3 plates). In this study, PEGMA capped AgNPs supplementation also induced the maximum increase in total phenolics content (2.46 mg GAE/g-FW), total flavonoids content (3.68 mg QE/g-FW), SOD activity (53.78 U/ml protein), GSH content (139.75 µg/g FW), antioxidant activity (54.3 mg AAE/g FW), FRAP (54 mg AAE/g FW), and DPPH (76.3%) in S. rebaudiana calli compared with the control. It was concluded that virgin Pe-AgNPs and PEGMA capped AgNPs (hybrid polymer) are potent growth regulator agents and elicitors that can be exploited in the biotechnology field for growth promotion and induction of essential bioactive compounds and secondary metabolites from various commercially important and medicinally valuable plants such as S. rebaudiana without laborious field cultivation.

6.
Front Plant Sci ; 13: 1029836, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438115

RESUMEN

Rapid industrialization and global warming have threatened the plants with multiple abiotic stresses, such as heavy metals and drought stress. For crop cultivation, the conventional approach of cleaning the soils by excavation is very costly and not feasible for large scale. Establishing toxin-free and drought-resistant crops is a major challenge in the environment under natural and anthropogenic pressure. In the past decades, copper contamination of agricultural land has become an emerging concern. For dry land reclamation, several new strategies, including bioremediation (phytoremediation and microbial remediation), have been used. Owing to the potential of Cu hyperaccumulators, the current project aims to enhance the drought tolerance and the phytoremediation potential of Solanum lycopersicum L. with the inoculation of copper and 12% polyethylene glycol (PEG)-induced drought stress-tolerant endophytic fungus Porostereum spadiceum AGH786 under the combined stress of copper heavy metal and PEG-induced drought stress. When S. lycopersicum L. was watered with individual stress of copper (Cu) concentration (400 ppm) in the form of copper sulfate (CuSO4.5H2O), 12% PEG-induced drought stress and the combined stress of both negatively affected the growth attributes, hormonal, metabolic, and antioxidant potential, compared with control. However, the multistress-resistant AGH786 endophytic fungus ameliorated the multistress tolerance response in S. lycopersicum L. by positively affecting the growth attributes, hormonal, metabolic, and antioxidant potential, and by restricting the root-to-shoot translocation of Cu and inducing its sequestration in the root tissues of affected plants. AGH786-associated plants exhibited a reduction in the severity of copper (Cu) and drought stress, with higher levels of SlCOPT (Cu transporters) and SlMT (metallothionine) gene expressions in root and shoot tissues, indicating that AGH786 contributed to resistance to copper metal toxicity and drought stress in the host S. lycopersicum L.

7.
PLoS One ; 17(10): e0273908, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36240136

RESUMEN

Endophytic fungi from the Chilli were used to help okra plants exposed to cadmium (Cd) or chromium (Cr) stress. Initially, the strain Ch06 produced higher amounts of indole acetic acid (IAA) (230.5 µg/mL), sugar (130.7 µg/mL), proteins (128.2 µg/mL), phenolics (525.6 µg/mL) and flavonoids (98.4 µg/mL) in Czapek broth supplemented with Cd or Cr. The production of IAA and other metabolites in such a higher concentration suggested that Ch06 might improve plant growth under heavy metal stress. For this reason, an experiment was designed, in which biomass of Ch06 (at 2g/100g of sand) were applied to the okra plants exposed to Cd or Cr stress (at 100 or 500 µg/g). The results exhibited that Ch06 improved the total chlorophyll (36.4±0.2 SPAD), shoot length (22.6±0.2 cm), root length (9.1±0.6 cm), fresh weight (5±0.6 g), dry weight (1.25±0.01 g), sugars (151.6 µg/g), proteins (114.8 µg/g), proline (6.7 µg/g), flavonoids (37.9 µg/g), phenolics (70.7 µg/g), IAA (106.7 µg/g), catalase (0.75 enzyme units/g tissue) and ascorbic acid oxidaze (2.2 enzyme units/g tissue) of the associated okra plants. Similar observations have been recorded in Ch06 associated okra plants under Cd and Cr stress. Also, Ch06 association reduced translocation of Cd (35% and 45%) and Cr (47% and 53%) to the upper parts of the okra plants and thus reduced their toxicity. The internal transcribed spacer (ITS) region amplification of 18S rDNA (ribosomal deoxyribo nucleic acid) exhibited that the potent strain Ch06 was Aspergillus violaceofuscus. The results implied that A. violaceofuscus has the ability to promote host species growth exposed to Cd and Cr. Moreover, it helped the host plants to recover in Cd and Cr polluted soils, hence can be used as biofertilizer.


Asunto(s)
Abelmoschus , Metales Pesados , Ácidos Nucleicos , Contaminantes del Suelo , Abelmoschus/metabolismo , Ácido Ascórbico , Aspergillus , Biodegradación Ambiental , Cadmio/metabolismo , Cadmio/toxicidad , Catalasa , Clorofila , Cromo/toxicidad , ADN Ribosómico , Flavonoides , Prolina/metabolismo , Arena , Contaminantes del Suelo/análisis , Azúcares
8.
Antioxidants (Basel) ; 11(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36139743

RESUMEN

Global climate change has imposed harsh environmental conditions such as drought. Naturally, the most compatible fungal consortia operate synergistically to enhance plant growth and ecophysiological responses against abiotic strains. Yet, little is known about the interactions between phytohormone-producing endophytic fungal symbionts and plant growth under drought stress. The existing research was rationalized to recognize the role of newly isolated drought-resistant, antioxidant-rich endophytic fungal consortia hosting a xerophytic plant, Carthamus oxycantha L., inoculated to Moringa oleifera L. grown under drought stress of 8% PEG (polyethylene glycol-8000). Under drought stress, the combined inoculation of endophytic strain Microdochium majus (WA), Meyerozyma guilliermondi (TG), and Aspergillus aculeatus (TL3) exhibited a significant improvement in growth attributes such as shoot fresh weight (1.71-fold), shoot length (0.86-fold), root length (0.65-fold), dry weight (2.18-fold), total chlorophyll (0.46-fold), and carotenoids (0.87-fold) in comparison to control (8% PEG). Primary and secondary metabolites were also increased in M. oleifera inoculated with endophytic consortia, under drought stress, such as proteins (1.3-fold), sugars (0.58-fold), lipids (0.41-fold), phenols (0.36-fold), flavonoids (0.52-fold), proline (0.6-fold), indole acetic acid (IAA) (4.5-fold), gibberellic acid (GA) (0.7-fold), salicylic acid (SA) (0.8-fold), ascorbic acid (ASA) (1.85-fold), while abscisic acid (ABA) level was decreased (-0.61-fold) in comparison to the control (8% PEG). Under drought stress, combined inoculation (WA, TG, TL3) also promoted the antioxidant activities of enzymes such as ascorbate peroxidase (APX) (3.5-fold), catalase (CAT) activity (1.7-fold), and increased the total antioxidant capacity (TAC) (0.78-fold) with reduced reactive oxygen species (ROS) such as H2O2 production (-0.4-fold), compared to control (8% PEG), and stomatal aperture was larger (3.5-fold) with a lesser decrease (-0.02-fold) in water potential. Moreover, combined inoculation (WA, TG, TL3) up regulated the expression of MolHSF3, MolHSF19, and MolAPX genes in M. oleifera under drought stress, compared to the control (8% PEG), is suggestive of an important regulatory role for drought stress tolerance governed by fungal endophytes. The current research supports the exploitation of the compatible endophytic fungi for establishing the tripartite mutualistic symbiosis in M. oleifera to alleviate the adverse effects of drought stress through strong antioxidant activities.

9.
Materials (Basel) ; 15(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36013613

RESUMEN

The current study sought to synthesize silver nanoparticles (AgNPs) from Amaryllis vittata (L.) leaf and bulb extracts in order to determine their biological significance and use the toxic plants for human health benefits. The formation of silver nanoparticles was detected by a change in color from whitish to brown for bulb-AgNPs and from light green to dark brown for leaf-AgNPs. For the optimization of silver nanoparticles, various experimental physicochemical parameters such as pH, temperature, and salt were determined. UV-vis spectroscopy, Fourier transform infrared spectroscopy, X-ray dispersion spectroscopy, scanning electron microscopy, and energy dispersion spectroscopy analysis were used to characterize nanoparticles. Despite the fact that flavonoids in plant extracts were implicated in the reduction and capping procedure, the prepared nanoparticles demonstrated maximum absorbency between 400 and 500 nm. SEM analysis confirmed the preparation of monodispersed spherical crystalline particles with fcc structure. The bioinspired nanoparticles were found to show effective insecticidal activity against Tribolium castaneum and phytotoxic activity against Lemna aequincotialis. In comparison to plant extracts alone, the tested fabricated nanoparticles showed significant potential to scavenge free radicals and relieve pain. Antibacterial testing against human pathogenic strains, i.e., Escherichia coli and Pseudomonas aureginosa, and antifungal testing against Aspergillus niger revealed the significant potential for microbe resistance using AgNPs. As a result of the findings, the tested silver nanoparticles demonstrated promising potential for developing new and effective pharmacological and agricultural medications. Furthermore, the effects of biogenic AgNPs on an in vitro culture of Solanum tuberosum L. plants were investigated, and the findings indicated that bulb-AgNPs and leaf-AgNPs produced biomass and induced antioxidants via their active constituents. As a result, bulb-AgNPs and leaf-AgNPs may be recommended for use in Solanum tuberosum L. tissue culture for biomass fabrication and metabolic induction.

10.
J Fungi (Basel) ; 8(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35887445

RESUMEN

Downy mildew (DM), caused by P. cubensis, is harmful to cucurbits including luffa, with increased shortcomings associated with its control through cultural practices, chemical fungicides, and resistant cultivars; there is a prompt need for an effective, eco-friendly, economical, and safe biocontrol approach. Current research is therefore dealt with the biocontrol of luffa DM1 through the endophytic fungi (EF) consortium. Results revealed that T. harzianum (ThM9) and T. virens (TvA1) showed pathogen-dependent inducible metabolic production of squalene and gliotoxins by higher gene expression induction of SQS1/ERG9 (squalene synthase) and GliP (non-ribosomal peptide synthetase). Gene expression of lytic enzymes of EF was also induced with subsequently higher enzyme activities upon confrontation with P. cubensis. EF-inoculated luffa seeds showed efficient germination with enhanced growth potential and vigor of seedlings. EF-inoculated plants showed an increased level of growth-promoting hormone GA with higher gene expression of GA2OX8. EF-pre-inoculated seedlings were resistant to DM and showed an increased GSH content and antioxidant enzyme activities (SOD, CAT, POD). The level of MDA, H2O2, REL, and disease severity was reduced by EF. ACC, JA, ABA, and SA were overproduced along with higher gene expression of LOX, ERF, NCED2, and PAL. Expression of defense-marker genes (PPO, CAT2, SOD, APX, PER5, LOX, NBS-LRR, PSY, CAS, Ubi, MLP43) was also modulated in EF-inoculated infected plants. Current research supported the use of EF inoculation to effectively escalate the systemic immunity against DM corresponding to the significant promotion of induced systemic resistance (ISR) and systemic acquired resistance (SAR) responses through initiating the defense mechanism by SA, ABA, ET, and JA biosynthesis and signaling pathways in luffa.

11.
Front Plant Sci ; 13: 890565, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898220

RESUMEN

Climate change is a major cause of the world's food security problems, and soil salinity is a severe hazard for a variety of crops. The exploitation of endophytic fungi that are known to have a positive association with plant roots is preferred for improving plant growth, yield, and overall performance under salt stress. The current study thus rationalized to address how salt stress affected the growth, biochemical properties, antioxidant capacity, endogenous indole-3-acetic acid (IAA), and the ionic status of maize associated with endophytic fungus (Stemphylium lycopersici). According to the findings, salt stress reduced chlorophyll a and b, total chlorophyll, total protein, sugars, lipids, and endogenous IAA levels. Enhanced values of chlorophyll a/b ratio, carotenoids, secondary metabolites (phenol, flavonoids, and tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), proline, and lipid peroxidation were noticed in maize plants under salt stress. Increased ionic content of Na+, Cl-, Na+/K+, and Na+/Ca2+ ratio, as well as decreased Ca2+, K+, Mg2+, N, and P contents, were also found in salt-stressed maize plants. In comparison to the non-saline medium, endophytic association promoted the antioxidant enzyme activities (798.7 U/g protein; catalase activity, 106 U/g protein; ascorbate peroxidase activity), IAA content (3.47 mg/g FW), and phenolics and flavonoids (88 and 1.68 µg/g FW, respectively), and decreased MDA content (0.016 nmol/g FW), Na+ ion content (18 mg/g dry weight), Cl- ion (16.6 mg/g dry weight), and Na+/K+ (0.78) and Na+/Ca2+ (1.79) ratios, in maize plants under salt stress, whereas Ca2+, K+, Mg2+, N, and P contents were increased in maize plants associated with S. lycopersici under salt stress. Current research exposed the role of S. lycopersici as an effective natural salt stress reducer and maize growth promoter; hence, it can be used as a biofertilizer to ameliorate salt stress tolerance in crops along with better growth performance in saline regions.

12.
Front Plant Sci ; 13: 874723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755683

RESUMEN

Heavy metal toxicity reduces the growth and development of crop plants growing in metal-contaminated regions. Disposal of industrial waste in agricultural areas has negative effects on the physiochemical activities of plants. This research aimed to examine the fulvic acid (FA)-mediated efficacy of Brassica napus L. regarding stress tolerance in soil amended with paper sludge (PS). For this purpose, plants were grown for 90 days under greenhouse conditions at various concentrations of PS-amended soils (0, 5, 10, and 15%) being irrigated with water containing FA (0, 10, and 20%). All the physicochemical parameters of PS were carried out before and after plant transplantation. Paper sludge toxicity reduced the growth (shoot/root length, fresh/dry weight of shoot/root, numbers of flowers and leaves) and physicochemical characteristics of exposed B. napus plants. In comparison, FA application improved growth by reducing the metal uptake in the shoot of plants grown at various concentrations of PS. An increasing trend in antioxidant enzyme activity was observed by increasing the FA concentration (0%-10% and 20%). Post-harvest analysis indicated that the amount of tested metals was significantly reduced at all PS concentrations. Minimum metal uptake was observed at 0% concentration and maximum at 15% concentration of paper sludge. Additionally, FA application at 20% concentration reduced Chromium (Cr), Cadmium (Cd), and Lead (Pb) uptake in the shoot from 6.08, 34.42, and 20.6 mgkg-1 to 3.62, 17.33, and 15.22 mgkg-1, respectively. At this concentration of paper sludge in the root, 20% FA reduced Cr, Cd, and Pb uptake from 11.19, 44.11, and 35.5 mgkg-1 to 7.88, 27.01, and 24.02 mgkg-1, respectively. Thus, FA at 20% concentration was found to be an effective stimulant to mitigate the metal stress in B. napus grown in paper sludge-polluted soil by reducing metal uptake and translocation to various plant parts.

13.
Front Plant Sci ; 13: 967672, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618664

RESUMEN

Introduction: Drought has become more prevalent due to dramatic climate change worldwide. Consequently, the most compatible fungal communities collaborate to boost plant development and ecophysiological responses under environmental constraints. However, little is known about the specific interactions between non-host plants and endophytic fungal symbionts that produce growth-promoting and stress-alleviating hormones during water deficits. Methods: The current research was rationalized and aimed at exploring the influence of the newly isolated, drought-resistant, ACC deaminase enzyme-producing endophytic fungi Trichoderma gamsii (TP), Fusarium proliferatum (TR), and its consortium (TP+TR) from a xerophytic plant Carthamus oxycantha L. on Moringa oleifera L. grown under water deficit induced by PEG-8000 (8% osmoticum solution). Results: The current findings revealed that the co-inoculation promoted a significant enhancement in growth traits such as dry weight (217%), fresh weight (123%), root length (65%), shoot length (53%), carotenoids (87%), and chlorophyll content (76%) in comparison to control plants under water deficit. Total soluble sugars (0.56%), proteins (132%), lipids (43%), flavonoids (52%), phenols (34%), proline (55%), GA3 (86%), IAA (35%), AsA (170%), SA (87%), were also induced, while H2O2 (-45%), ABA (-60%) and ACC level (-77%) was decreased by co-inoculation of TP and TR in M. oleifera plants, compared with the non-inoculated plants under water deficit. The co-inoculum (TP+TR) also induced the antioxidant potential and enzyme activities POX (325%), CAT activity (166%), and AsA (21%), along with a lesser decrease (-2%) in water potential in M. oleifera plants with co-inoculation under water deficit compared with non-inoculated control. The molecular analysis for gene expression unraveled the reduced expression of ethylene biosynthesis and signaling-related genes up to an optimal level, with an induction of antioxidant enzymatic genes by endophytic co-inoculation in M. oleifera plants under water deficit, suggesting their role in drought stress tolerance as an essential regulatory function. Conclusion: The finding may alert scientists to consider the impacts of optimal reduction of ethylene and induction of antioxidant potential on drought stress tolerance in M. oleifera. Hence, the present study supports the use of compatible endophytic fungi to build a bipartite mutualistic symbiosis in M. oleifera non-host plants to mitigate the negative impacts of water scarcity in arid regions throughout the world.

14.
Biology (Basel) ; 10(6)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199962

RESUMEN

Single-nucleotide polymorphisms (SNPs) are reported to be associated with many diseases, including autoimmune diseases. In rheumatoid arthritis (RA), about 152 SNPs are reported to account for ~15% of its heritability. These SNPs may result in the alteration of gene expression and may also affect the stability of mRNA, resulting in diseased protein. Therefore, in order to predict the underlying mechanism of these SNPs and identify novel therapeutic sites for the treatment of RA, several bioinformatics tools were used. The damaging effect of 23 non-synonymous SNPs on proteins using different tools suggested four SNPs, including rs2476601 in PTPN22, rs5029941 and rs2230926 in TNFAIP3, and rs34536443 in TYK2, to be the most damaging. In total, 42 of 76 RA-associated intronic SNPs were predicted to create or abolish potential splice sites. Moreover, the analysis of 11 RA-associated UTR SNPs indicated that only one SNP, rs1128334, located in 3'UTR of ETS1, caused functional pattern changes in BRD-BOX. For the identification of novel therapeutics sites to treat RA, extensive gene-gene interaction network interactive pathways were established, with the identification of 13 potential target sites for the development of RA drugs, including three novel target genes. The anticipated effect of these findings on RA pathogenesis may be further validated in both in vivo and in vitro studies.

15.
Bull Environ Contam Toxicol ; 104(6): 828-833, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32385520

RESUMEN

In this study, we investigated the effect of long-term pesticides and chemical fertilizers application on the microbial communities specifically anammox and denitrification bacteria in rice field soils. The abundances of microbial communities (16S rDNA), anammox (hszB), and denitrification (narG, nirK, nirS, and nosZ) genes were quantified by q-PCR. 10 pesticides (5 insecticides, 3 fungicides and 2 herbicides) and chemical fertilizers urea, potassium, phosphate, DAP (di-ammonium phosphate), gypsum, and boric acid were used by local farmers. Nitrate, SOC (ammonia, soil organic carbon), N and C content significantly (p < 0.05) decreased in the rice field soils as compared to the upland soils. Abundance of 16S rDNA, hszB, narG, nirK, nirS, and nosZ genes significantly (p < 0.05) decreased in the rice field soils and positively correlated with chemical properties of soils. Our results provide useful information and further maintenance should be instilled to the potential of chemical and biological factors decreased in rice field soils.


Asunto(s)
Fertilizantes/análisis , Genes Bacterianos , Microbiota/efectos de los fármacos , Oryza/crecimiento & desarrollo , Plaguicidas/toxicidad , Suelo/química , Amoníaco/análisis , Carbono , Desnitrificación/genética , Microbiota/genética , Nitratos/análisis , Plaguicidas/análisis , Microbiología del Suelo
16.
Front Plant Sci ; 11: 614971, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537050

RESUMEN

Waterlogging stress (WS) induces ethylene (ET) and polyamine (spermine, putrescine, and spermidine) production in plants, but their reprogramming is a decisive element for determining the fate of the plant upon waterlogging-induced stress. WS can be challenged by exploring symbiotic microbes that improve the plant's ability to grow better and resist WS. The present study deals with identification and application of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing fungal endophyte Trichoderma asperellum (strain MAP1), isolated from the roots of Canna indica L., on wheat growth under WS. MAP1 positively affected wheat growth by secreting phytohormones/secondary metabolites, strengthening the plant's antioxidant system and influencing the physiology through polyamine production and modulating gene expression. MAP1 inoculation promoted yield in comparison to non-endophyte inoculated waterlogged seedlings. Exogenously applied ethephon (ET synthesis inducer) and 1-aminocyclopropane carboxylic acid (ACC; ET precursor) showed a reduction in growth, compared to MAP1-inoculated waterlogged seedlings, while amino-oxyacetic acid (AOA; ET inhibitor) application reversed the negative effect imposed by ET and ACC, upon waterlogging treatment. A significant reduction in plant growth rate, chlorophyll content, and stomatal conductance was noticed, while H2O2, MDA production, and electrolyte leakage were increased in non-inoculated waterlogged seedlings. Moreover, in comparison to non-inoculated waterlogged wheat seedlings, MAP1-inoculated waterlogged wheat exhibited antioxidant-enzyme activities. In agreement with the physiological results, genes associated with the free polyamine (PA) biosynthesis were highly induced and PA content was abundant in MAP1-inoculated seedlings. Furthermore, ET biosynthesis/signaling gene expression was reduced upon MAP1 inoculation under WS. Briefly, MAP1 mitigated the adverse effect of WS in wheat, by reprogramming the PAs and ET biosynthesis, which leads to optimal stomatal conductance, increased photosynthesis, and membrane stability as well as reduced ET-induced leaf senescence.

17.
J Genet ; 982019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31819019

RESUMEN

Cancer is one of the deadliest complex diseases having multigene nature where the role of single-nucleotide polymorphism (SNP) has been well explored in multiple genes. TOX high mobility group box family member 3 (TOX3) is one such gene, in which SNPs have been found to be associated with breast cancer. In this study, we have examined the potentially damaging nonsynonymous SNPs(nsSNPs) in TOX3 gene using in silico tools, namely PolyPhen2, SNP&GO, PhD-SNP and PROVEAN, which were further confirmed by I-Mutant, MutPred1.2 and ConSurf for their stability, functional and structural effects. nsSNPs rs368713418 (A266D), rs751141352 (P273S, P273T), rs200878352 (A275T) have been found to be the most deleterious that may have a vital role in breast cancer. Premature stop codon producing SNPs (Q527STOP), rs1259790811 (G495STOP), rs1294465822 (S395STOP) and rs1335372738 (G8STOP) were also found having prime importance in truncated and malfunctional protein formation. We also characterized regulatory SNPs for its potential effect on TOX3 gene regulation and found nine SNPs that may affect the gene regulation. Further, we have also designed 3D models using I-TASSER for the wild type and four mutant TOX3 proteins. Our study concludes that these SNPs can be of prime importance while studying breast cancer and other associated diseases as well. They are required to be studied in model organisms and cell cultures, and may have potential importance in personalized medicines and gene therapy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Polimorfismo de Nucleótido Simple , Transactivadores/genética , Sitios de Unión , Neoplasias de la Mama/genética , Biología Computacional , Simulación por Computador , Bases de Datos Genéticas , Femenino , Humanos , Modelos Moleculares , Proteínas Mutantes , Fosforilación , Conformación Proteica
18.
Plant Cell ; 25(12): 4941-55, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24363315

RESUMEN

In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor speedy hyponastic growth (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several expansin and xyloglucan endotransglycosylase/hydrolase genes encoding cell wall-loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC oxidase5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Estrés Fisiológico , Factores de Transcripción/fisiología , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Aminoácido Oxidorreductasas/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Aumento de la Célula , Regulación de la Expresión Génica de las Plantas , Mutagénesis Insercional , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agua
19.
EMBO Rep ; 14(4): 382-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23459204

RESUMEN

Leaf senescence is a key physiological process in all plants. Its onset is tightly controlled by transcription factors, of which NAC factor ORE1 (ANAC092) is crucial in Arabidopsis thaliana. Enhanced expression of ORE1 triggers early senescence by controlling a downstream gene network that includes various senescence-associated genes. Here, we report that unexpectedly ORE1 interacts with the G2-like transcription factors GLK1 and GLK2, which are important for chloroplast development and maintenance, and thereby for leaf maintenance. ORE1 antagonizes GLK transcriptional activity, shifting the balance from chloroplast maintenance towards deterioration. Our finding identifies a new mechanism important for the control of senescence by ORE1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/fisiología , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Técnicas de Inactivación de Genes , Unión Proteica , Factores de Transcripción/genética , Transcripción Genética , Transcriptoma , Técnicas del Sistema de Dos Híbridos
20.
Mol Plant ; 6(5): 1438-52, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23340744

RESUMEN

Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively controlling senescence in Arabidopsis thaliana; however, no direct target gene through which it exerts its molecular function has been identified previously. Here, we report that BIFUNCTIONAL NUCLEASE1 (BFN1), a well-known senescence-enhanced gene, is directly regulated by ORE1. We detected elevated expression of BFN1 already 2 h after induction of ORE1 in estradiol-inducible ORE1 overexpression lines and 6 h after transfection of Arabidopsis mesophyll cell protoplasts with a 35S:ORE1 construct. ORE1 and BFN1 expression patterns largely overlap, as shown by promoter-reporter gene (GUS) fusions, while BFN1 expression in senescent leaves and the abscission zones of maturing flower organs was virtually absent in ore1 mutant background. In vitro binding site assays revealed a bipartite ORE1 binding site, similar to that of ORS1, a paralog of ORE1. A bipartite ORE1 binding site was identified in the BFN1 promoter; mutating the cis-element within the context of the full-length BFN1 promoter drastically reduced ORE1-mediated transactivation capacity in transiently transfected Arabidopsis mesophyll cell protoplasts. Furthermore, chromatin immunoprecipitation (ChIP) demonstrates in vivo binding of ORE1 to the BFN1 promoter. We also demonstrate binding of ORE1 in vivo to the promoters of two other senescence-associated genes, namely SAG29/SWEET15 and SINA1, supporting the central role of ORE1 during senescence.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Desoxirribonucleasas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Desoxirribonucleasas/genética , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica de las Plantas , Células del Mesófilo/citología , Células del Mesófilo/metabolismo , Modelos Biológicos , Mutación/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Protoplastos/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...