Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Acta Neuropathol Commun ; 12(1): 25, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38336940

Alzheimer's disease (AD), characterized by the deposition of amyloid-ß (Aß) in senile plaques and neurofibrillary tangles of phosphorylated tau (pTau), is increasingly recognized as a complex disease with multiple pathologies. AD sometimes pathologically overlaps with age-related tauopathies such as four repeat (4R)-tau predominant argyrophilic grain disease (AGD). While AGD is often detected with AD pathology, the contribution of APOE4 to AGD risk is not clear despite its robust effects on AD pathogenesis. Specifically, how APOE genotype influences Aß and tau pathology in co-occurring AGD and AD has not been fully understood. Using postmortem brain samples (N = 353) from a neuropathologically defined cohort comprising of cases with AD and/or AGD pathology built to best represent different APOE genotypes, we measured the amounts of major AD-related molecules, including Aß40, Aß42, apolipoprotein E (apoE), total tau (tTau), and pTau181, in the temporal cortex. The presence of tau lesions characteristic of AD (AD-tau) was correlated with cognitive decline based on Mini-Mental State Examination (MMSE) scores, while the presence of AGD tau lesions (AGD-tau) was not. Interestingly, while APOE4 increased the risk of AD-tau pathology, it did not increase the risk of AGD-tau pathology. Although APOE4 was significantly associated with higher levels of insoluble Aß40, Aß42, apoE, and pTau181, the APOE4 effect was no longer detected in the presence of AGD-tau. We also found that co-occurrence of AGD with AD was associated with lower insoluble Aß42 and pTau181 levels. Overall, our findings suggest that different patterns of Aß, tau, and apoE accumulation mediate the development of AD-tau and AGD-tau pathology, which is affected by APOE genotype.


Alzheimer Disease , Apolipoproteins E , Tauopathies , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid , Amyloid beta-Peptides , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , tau Proteins , Tauopathies/pathology
2.
Nat Immunol ; 24(11): 1854-1866, 2023 Nov.
Article En | MEDLINE | ID: mdl-37857825

Microglial involvement in Alzheimer's disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (APOE) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4. Expression of apoE3 in microglia/CAMs improves cognitive function, increases microglia surrounding amyloid plaque and reduces amyloid pathology and associated toxicity, whereas apoE4 expression either compromises or has no effects on these outcomes by impairing lipid metabolism. Single-cell transcriptomic profiling reveals increased antigen presentation and interferon pathways upon apoE3 expression. In contrast, apoE4 expression downregulates complement and lysosomal pathways, and promotes stress-related responses. Moreover, in the presence of mouse endogenous apoE, microglial apoE4 exacerbates amyloid pathology. Finally, we observed a reduction in Lgals3-positive responsive microglia surrounding amyloid plaque and an increased accumulation of lipid droplets in APOE4 human brains and induced pluripotent stem cell-derived microglia. Our findings establish critical isoform-dependent effects of microglia/CAM-expressed apoE in brain function and the development of amyloid pathology, providing new insight into how apoE4 vastly increases AD risk.


Alzheimer Disease , Mice , Animals , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Microglia/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Brain , Homeostasis , Mice, Transgenic
3.
STAR Protoc ; 4(2): 102271, 2023 Jun 07.
Article En | MEDLINE | ID: mdl-37289593

The apolipoprotein E protein (apoE) confers differential risk for Alzheimer's disease depending on which isoforms are expressed. Here, we present a 2-day immunoprecipitation protocol using the HJ15.4 monoclonal apoE antibody for the pull-down of native apoE particles. We describe major steps for apoE production via immortalized astrocyte culture and HJ15.4 antibody bead coupling for apoE particle pull-down, elution, and characterization. This protocol could be used to isolate native apoE particles from multiple model systems or human biospecimens.

4.
JAMA ; 329(7): 551-560, 2023 02 21.
Article En | MEDLINE | ID: mdl-36809323

Importance: Numerous studies have established the association of the common APOE ε2 and APOE ε4 alleles with Alzheimer disease (AD) risk across ancestries. Studies of the interaction of these alleles with other amino acid changes on APOE in non-European ancestries are lacking and may improve ancestry-specific risk prediction. Objective: To determine whether APOE amino acid changes specific to individuals of African ancestry modulate AD risk. Design, Setting, and Participants: Case-control study including 31 929 participants and using a sequenced discovery sample (Alzheimer Disease Sequencing Project; stage 1) followed by 2 microarray imputed data sets derived from the Alzheimer Disease Genetic Consortium (stage 2, internal replication) and the Million Veteran Program (stage 3, external validation). This study combined case-control, family-based, population-based, and longitudinal AD cohorts, which recruited participants (1991-2022) in primarily US-based studies with 1 US/Nigerian study. Across all stages, individuals included in this study were of African ancestry. Exposures: Two APOE missense variants (R145C and R150H) were assessed, stratified by APOE genotype. Main Outcomes and Measures: The primary outcome was AD case-control status, and secondary outcomes included age at AD onset. Results: Stage 1 included 2888 cases (median age, 77 [IQR, 71-83] years; 31.3% male) and 4957 controls (median age, 77 [IQR, 71-83] years; 28.0% male). In stage 2, across multiple cohorts, 1201 cases (median age, 75 [IQR, 69-81] years; 30.8% male) and 2744 controls (median age, 80 [IQR, 75-84] years; 31.4% male) were included. In stage 3, 733 cases (median age, 79.4 [IQR, 73.8-86.5] years; 97.0% male) and 19 406 controls (median age, 71.9 [IQR, 68.4-75.8] years; 94.5% male) were included. In ε3/ε4-stratified analyses of stage 1, R145C was present in 52 individuals with AD (4.8%) and 19 controls (1.5%); R145C was associated with an increased risk of AD (odds ratio [OR], 3.01; 95% CI, 1.87-4.85; P = 6.0 × 10-6) and was associated with a reported younger age at AD onset (ß, -5.87 years; 95% CI, -8.35 to -3.4 years; P = 3.4 × 10-6). Association with increased AD risk was replicated in stage 2 (R145C was present in 23 individuals with AD [4.7%] and 21 controls [2.7%]; OR, 2.20; 95% CI, 1.04-4.65; P = .04) and was concordant in stage 3 (R145C was present in 11 individuals with AD [3.8%] and 149 controls [2.7%]; OR, 1.90; 95% CI, 0.99-3.64; P = .051). Association with earlier AD onset was replicated in stage 2 (ß, -5.23 years; 95% CI, -9.58 to -0.87 years; P = .02) and stage 3 (ß, -10.15 years; 95% CI, -15.66 to -4.64 years; P = 4.0 × 10-4). No significant associations were observed in other APOE strata for R145C or in any APOE strata for R150H. Conclusions and Relevance: In this exploratory analysis, the APOE ε3[R145C] missense variant was associated with an increased risk of AD among individuals of African ancestry with the ε3/ε4 genotype. With additional external validation, these findings may inform AD genetic risk assessment in individuals of African ancestry.


Alzheimer Disease , Apolipoprotein E4 , Black People , Aged , Aged, 80 and over , Female , Humans , Male , Alleles , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Black People/genetics , Case-Control Studies , Genotype , Risk Factors , Mutation, Missense
5.
STAR Protoc ; 4(1): 101976, 2023 03 17.
Article En | MEDLINE | ID: mdl-36598853

Cholesterol is a structural component of cell membranes. Most cells are incapable of its catabolism, and intracellular cholesterol accumulation is linked to several disorders including cardiovascular and neurodegenerative diseases. Cholesterol efflux, essential to its metabolism, is dependent on acceptors such as apolipoproteins. Here, we describe an assay to evaluate the capacity of cholesterol acceptors. Cells are treated with an analog of cholesterol tagged with fluorescent BODIPY. Addition of an acceptor leads to BODIPY-cholesterol efflux, measured using a plate reader. For complete details on the use and execution of this protocol, please refer to Liu et al. (2021).1.


Apolipoproteins , Cholesterol , Cholesterol/metabolism , Apolipoproteins/metabolism , Boron Compounds , Biological Transport
6.
Cell Stem Cell ; 29(12): 1685-1702.e22, 2022 12 01.
Article En | MEDLINE | ID: mdl-36459969

Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field.


Induced Pluripotent Stem Cells , Humans , Cell Differentiation , Gene Editing , Biological Assay
7.
Mol Neurodegener ; 17(1): 72, 2022 11 08.
Article En | MEDLINE | ID: mdl-36348357

Alzheimer's disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-ß (Aß) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aß-related or Aß-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.


Alzheimer Disease , Humans , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoprotein E4/genetics , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/pathology , Alleles
8.
Mol Neurodegener ; 17(1): 57, 2022 09 02.
Article En | MEDLINE | ID: mdl-36056345

BACKGROUND: The aggregation and spread of α-synuclein (α-Syn) protein and related neuronal toxicity are the key pathological features of Parkinson's disease (PD) and Lewy body dementia (LBD). Studies have shown that pathological species of α-Syn and tau can spread in a prion-like manner between neurons, although these two proteins have distinct pathological roles and contribute to different neurodegenerative diseases. It is reported that the low-density lipoprotein receptor-related protein 1 (LRP1) regulates the spread of tau proteins; however, the molecular regulatory mechanisms of α-Syn uptake and spread, and whether it is also regulated by LRP1, remain poorly understood. METHODS: We established LRP1 knockout (LRP1-KO) human induced pluripotent stem cells (iPSCs) isogenic lines using a CRISPR/Cas9 strategy and generated iPSC-derived neurons (iPSNs) to test the role of LRP1 in α-Syn uptake. We treated the iPSNs with fluorescently labeled α-Syn protein and measured the internalization of α-Syn using flow cytometry. Three forms of α-Syn species were tested: monomers, oligomers, and pre-formed fibrils (PFFs). To examine whether the lysine residues of α-Syn are involved in LRP1-mediated uptake, we capped the amines of lysines on α-Syn with sulfo-NHS acetate and then measured the internalization. We also tested whether the N-terminus of α-Syn is critical for LRP1-mediated internalization. Lastly, we investigated the role of Lrp1 in regulating α-Syn spread with a neuronal Lrp1 conditional knockout (Lrp1-nKO) mouse model. We generated adeno-associated viruses (AAVs) that allowed for distinguishing the α-Syn expression versus spread and injected them into the hippocampus of six-month-old Lrp1-nKO mice and the littermate wild type (WT) controls. The spread of α-Syn was evaluated three months after the injection. RESULTS: We found that the uptake of both monomeric and oligomeric α-Syn was significantly reduced in iPSNs with LRP1-KO compared with the WT controls. The uptake of α-Syn PFFs was also inhibited in LRP1-KO iPSNs, albeit to a much lesser extent compared to α-Syn monomers and oligomers. The blocking of lysine residues on α-Syn effectively decreased the uptake of α-Syn in iPSNs and the N-terminus of α-Syn was critical for LRP1-mediated α-Syn uptake. Finally, in the Lrp1-nKO mice, the spread of α-Syn was significantly reduced compared with the WT littermates. CONCLUSIONS: We identified LRP1 as a key regulator of α-Syn neuronal uptake, as well as an important mediator of α-Syn spread in the brain. This study provides new knowledge on the physiological and pathological role of LRP1 in α-Syn trafficking and pathology, offering insight for the treatment of synucleinopathies.


Induced Pluripotent Stem Cells , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , alpha-Synuclein/metabolism , Animals , Humans , Induced Pluripotent Stem Cells/metabolism , Infant , Mice , Parkinson Disease/metabolism , Synapsins , tau Proteins/metabolism
9.
Annu Rev Biochem ; 91: 731-759, 2022 06 21.
Article En | MEDLINE | ID: mdl-35303786

The brain, as one of the most lipid-rich organs, heavily relies on lipid transport and distribution to maintain homeostasis and neuronal function. Lipid transport mediated by lipoprotein particles, which are complex structures composed of apolipoproteins and lipids, has been thoroughly characterized in the periphery. Although lipoproteins in the central nervous system (CNS) were reported over half a century ago, the identification of APOE4 as the strongest genetic risk factor for Alzheimer's disease has accelerated investigation of the biology and pathobiology of lipoproteins in the CNS. This review provides an overview of the different components of lipoprotein particles, in particular apolipoproteins, and their involvements in both physiological functions and pathological mechanisms in the CNS.


Alzheimer Disease , Apolipoproteins E , Alzheimer Disease/genetics , Apolipoproteins , Apolipoproteins E/genetics , Biology , Central Nervous System , Humans
10.
Sci Transl Med ; 13(613): eabc9375, 2021 Sep 29.
Article En | MEDLINE | ID: mdl-34586832

Apolipoprotein E (APOE) genetic variants have been shown to modify Alzheimer's disease (AD) risk. We previously identified an APOE3 variant (APOE3-V236E), named APOE3-Jacksonville (APOE3-Jac), associated with healthy brain aging and reduced risk for AD and dementia with Lewy bodies (DLB). Herein, we resolved the functional mechanism by which APOE3-Jac reduces APOE aggregation and enhances its lipidation in human brains, as well as in cellular and biochemical assays. Compared to APOE3, expression of APOE3-Jac in astrocytes increases several classes of lipids in the brain including phosphatidylserine, phosphatidylethanolamine, phosphatidic acid, and sulfatide, critical for synaptic functions. Mice expressing APOE3-Jac have reduced amyloid pathology, plaque-associated immune responses, and neuritic dystrophy. The V236E substitution is also sufficient to reduce the aggregation of APOE4, whose gene allele is a major genetic risk factor for AD and DLB. These findings suggest that targeting APOE aggregation might be an effective strategy for treating a subgroup of individuals with AD and DLB.


Apolipoprotein E3/genetics , Dementia , Apolipoproteins E , Dementia/genetics , Humans
11.
J Mol Biol ; 431(12): 2248-2265, 2019 05 31.
Article En | MEDLINE | ID: mdl-31051176

Apolipoprotein E4 (ApoE4) is one of three (E2, E3 and E4) human isoforms of an α-helical, 299-amino-acid protein. Homozygosity for the ε4 allele is the major genetic risk factor for developing late-onset Alzheimer's disease (AD). ApoE2, ApoE3 and ApoE4 differ at amino acid positions 112 and 158, and these sequence variations may confer conformational differences that underlie their participation in the risk of developing AD. Here, we compared the shape, oligomerization state, conformation and stability of ApoE isoforms using a range of complementary biophysical methods including small-angle x-ray scattering, analytical ultracentrifugation, circular dichroism, x-ray fiber diffraction and transmission electron microscopy We provide an in-depth and definitive study demonstrating that all three proteins are similar in stability and conformation. However, we show that ApoE4 has a propensity to polymerize to form wavy filaments, which do not share the characteristics of cross-ß amyloid fibrils. Moreover, we provide evidence for the inhibition of ApoE4 fibril formation by ApoE3. This study shows that recombinant ApoE isoforms show no significant differences at the structural or conformational level. However, self-assembly of the ApoE4 isoform may play a role in pathogenesis, and these results open opportunities for uncovering new triggers for AD onset.


Alzheimer Disease/metabolism , Amyloid/metabolism , Apolipoprotein E4/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Amyloid/chemistry , Amyloid/ultrastructure , Apolipoprotein E4/chemistry , Apolipoprotein E4/ultrastructure , Humans , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/ultrastructure , Protein Multimerization , Protein Stability , Risk Factors
12.
Brain Sci ; 8(9)2018 Sep 11.
Article En | MEDLINE | ID: mdl-30208635

Repetitive excessive alcohol intoxication leads to neuronal damage and brain shrinkage. We examined cytoskeletal protein expression in human post-mortem tissue from Brodmann's area 9 of the prefrontal cortex (PFC). Brain samples from 44 individuals were divided into equal groups of 11 control, 11 alcoholic, 11 non-alcoholic suicides, and 11 suicide alcoholics matched for age, sex, and post-mortem delay. Tissue from alcoholic cohorts displayed significantly reduced expression of α- and ß-tubulins, and increased levels of acetylated α-tubulin. Protein levels of histone deacetylase-6 (HDAC6), and the microtubule-associated proteins MAP-2 and MAP-tau were reduced in alcoholic cohorts, although for MAPs this was not significant. Tubulin gene expressions increased in alcoholic cohorts but not significantly. Brains from rats administered alcohol for 4 weeks also displayed significantly reduced tubulin protein levels and increased α-tubulin acetylation. PFC tissue from control subjects had reduced tubulin protein expression that was most notable from the sixth to the eighth decade of life. Collectively, loss of neuronal tubulin proteins are a hallmark of both chronic alcohol consumption and natural brain ageing. The reduction of cytosolic tubulin proteins could contribute to the brain volumetric losses reported for alcoholic patients and the elderly.

13.
J Mol Biol ; 430(21): 4119-4131, 2018 10 19.
Article En | MEDLINE | ID: mdl-30121297

Alzheimer's disease is a tauopathy characterized by pathological fibrillization of tau protein to form the paired helical filaments (PHFs), which constitute neurofibrillary tangles. The methylthioninium (MT) moiety reverses the proteolytic stability of the PHF core and is in clinical development for treatment of Alzheimer's disease in a stable reduced form as leuco-MT. It has been hypothesized that MT acts via oxidation of cysteine residues, which is incompatible with activity in the predominantly reducing environment of living cells. We have shown recently that the PHF-core tau unit assembles spontaneously in vitro to form PHF-like filaments. Here we describe studies using circular dichroism, SDS-PAGE, transmission electron microscopy and site-directed mutagenesis to elucidate the mechanism of action of the MT moiety. We show that MT inhibitory activity is optimal in reducing conditions, that the active moiety is the reduced leuco-MT form of the molecule and that its mechanism of action is cysteine independent.


Cysteine/metabolism , Methylene Blue/analogs & derivatives , Neurofibrillary Tangles/chemistry , Neurofibrillary Tangles/metabolism , tau Proteins/chemistry , tau Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Heparin/chemistry , Humans , Methylene Blue/chemistry , Molecular Structure , Neurofibrillary Tangles/ultrastructure , Recombinant Proteins , Spectrum Analysis
...