Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Bioresour Technol ; 396: 130432, 2024 Mar.
Article En | MEDLINE | ID: mdl-38346593

Cyanobacteria are the prospective biosolar cell factories to produce a range of bioproducts through CO2 sequestration. Farnesene is a sesquiterpene with an array of applications in biofuels, pest management, cosmetics, flavours and fragrances. This is the first time a codon-optimized farnesene synthase (AFS) gene is engineered into the genomic neutral site of Synechococcus elongatus UTEX 2973 for farnesene synthesis through its endogenous methylerythritol phosphate (MEP) pathway, rendering UTEX AFS strain. Similarly, bottleneck gene(s) of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate synthase (dxs) and/or fusion of isopentenyl diphosphate isomerase and farnesyl diphosphate synthase (idispA) were engineered engendering UTEX AFS::dxs, UTEX AFS::idispA and UTEX AFS::dxs::idispA strains. UTEX AFS::dxs::idispA achieves farnesene productivity of 2.57 mg/L/day, the highest among engineered cyanobacterial strains studied so far. It demonstrates farnesene production, which is 31.3-times higher than the UTEX AFS strain. Moreover, the engineered strains show similar productivity over a three-month period, stipulating the genetic stability of the strains.


Sesquiterpenes , Synechococcus , Carbon Dioxide/metabolism , Prospective Studies , Sesquiterpenes/metabolism , Synechococcus/genetics , Synechococcus/metabolism , Metabolic Engineering
2.
Bioresour Technol ; 387: 129677, 2023 Nov.
Article En | MEDLINE | ID: mdl-37579861

An engineered Synechococcus elongatus UTEX 2973-IspS.IDI is used to enhance isoprene production through geranyl diphosphate synthase (CrtE) inhibition and process parameters (light intensity, NaHCO3 and growth temperature) optimization approach. A cumulative isoprene production of 1.21 mg/gDCW was achieved with productivity of 12.6 µg/gDCW/h in culture supplemented with 20 µg/mL alendronate. This inhibition strategy improvises the cumulative isoprene production 5.76-fold in presence of alendronate. The maximum cumulative production of isoprene is observed to be 5.22 and 6.20 mg/gDCW (54.4 and 64.6 µg/gDCW/h) at statistical and artificial neural network genetic algorithm (ANN-GA) optimized conditions, respectively. The overall increase of isoprene production is found to be 29.52-fold using an integrated approach of inhibition and ANN-GA optimization in comparison to unoptimized cultures without alendronate. This study reveals that alendronate use as a potential inhibitor and machine learning based optimization is a better approach in comparison to statistical optimization to enhance the isoprene production.


Alendronate , Synechococcus , Alendronate/metabolism , Metabolic Networks and Pathways , Synechococcus/metabolism , Metabolic Engineering
3.
Plant Cell Rep ; 41(9): 1791-1803, 2022 Sep.
Article En | MEDLINE | ID: mdl-35789422

Terpenoids are synthesized naturally by plants as secondary metabolites, and are diverse and complex in structure with multiple applications in bioenergy, food, cosmetics, and medicine. This makes the production of terpenoids such as isoprene, ß-phellandrene, farnesene, amorphadiene, and squalene valuable, owing to which their industrial demand cannot be fulfilled exclusively by plant sources. They are synthesized via the Methylerythritol phosphate pathway (MEP) and the Mevalonate pathway (MVA), both existing in plants. The advent of genetic engineering and the latest accomplishments in synthetic biology and metabolic engineering allow microbial synthesis of terpenoids. Cyanobacteria manifest to be the promising hosts for this, utilizing sunlight and CO2. Cyanobacteria possess MEP pathway to generate precursors for terpenoid synthesis. The terpenoid synthesis can be amplified by overexpressing the MEP pathway and engineering MVA pathway genes. According to the desired terpenoid, terpene synthases unique to the plant kingdom must be incorporated in cyanobacteria. Engineering an organism to be used as a cell factory comes with drawbacks such as hampered cell growth and disturbance in metabolic flux. This review set forth a comparison between MEP and MVA pathways, strategies to overexpress these pathways with their challenges.


Cyanobacteria , Terpenes , Cyanobacteria/genetics , Cyanobacteria/metabolism , Metabolic Engineering , Mevalonic Acid/metabolism , Plants/genetics , Plants/metabolism , Terpenes/metabolism
4.
World J Microbiol Biotechnol ; 37(12): 201, 2021 Oct 19.
Article En | MEDLINE | ID: mdl-34664124

Cyanobacteria, photosynthetic prokaryotic microorganisms having a simple genetic composition are the prospective photoautotrophic cell factories for the production of a wide range of biofuel molecules. The simple genetic composition of cyanobacteria allows effortless genetic manipulation which leads to increased research endeavors from the synthetic biology approach. Various unicellular model cyanobacterial strains like Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 have been successfully engineered for biofuels generation. Improved development of synthetic biology tools, genetic modification methods and advancement in transformation techniques to construct a strain that can contain multiple foreign genes in a single operon have vastly expanded the functions that can be used for engineering photosynthetic cyanobacteria for the generation of various biofuel molecules. In this review, recent advancements and approaches in synthetic biology tools used for cyanobacterial genome editing have been discussed. Apart from this, cyanobacterial productions of various fuel molecules like isoprene, limonene, α-farnesene, squalene, alkanes, butanol, and fatty acids, which can be a substitute for petroleum and fossil fuels in the future, have been elaborated.


Biofuels , Cyanobacteria/metabolism , Photosynthesis/physiology , Synthetic Biology/methods , Alkanes/metabolism , Butanols , CRISPR-Cas Systems , Carrier Proteins , Cyanobacteria/genetics , Fatty Acids , Limonene/metabolism , Metabolic Engineering , Photosynthesis/genetics , Sesquiterpenes , Squalene , Synechococcus/metabolism , Synechocystis
5.
J Biochem Mol Toxicol ; 34(12): e22582, 2020 Dec.
Article En | MEDLINE | ID: mdl-32662914

Cyanotoxins are produced by the toxic cyanobacterial species present in algal blooms formed in water bodies due to nutrient over-enrichment by human influences and natural environmental conditions. Extensive studies are available on the most widely encountered cyanotoxins, microcystins (MCs) in fresh and brackish water bodies. MC contaminated water poses severe risks to human health, environmental sustainability, and aquatic life. Therefore, commonly occurring MCs should be monitored. Occasionally, detection and quantification of these toxins are difficult due to the unavailability of pure standards. Enzymatic, immunological assays, and analytical techniques like protein phosphatase inhibition assay, enzyme-linked immunosorbent assay, high-performance liquid chromatography, liquid chromatography-mass spectrometry, and biosensors are used for their detection and quantification. There is no single method for the detection of all the different types of MCs; therefore, various techniques are often combined to yield reliable results. Biosensor development offered a problem-solving approach in the detection of MCs due to their high accuracy, sensitivity, rapid response, and portability. In this review, an endeavor has been made to uncover emerging techniques used for the detection and quantification of the MCs.


Chemistry Techniques, Analytical/methods , Microcystins/analysis , Limit of Detection , Microcystins/toxicity , Reproducibility of Results
...