Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Molecules ; 29(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39275111

RESUMEN

Boron Neutron Capture Therapy (BNCT) is a cancer treatment which combines tumor-selective boron delivery agents with thermal neutrons in order to selectively eradicate cancer cells. In this work, we focus on the early-stage development of carbohydrate delivery agents for BNCT. In more detail, we expand upon our previous GLUT-targeting approach by synthesizing and evaluating the potential embedded in a representative set of fluorinated carbohydrates bearing a boron cluster. Our findings indicate that these species may have advantages over the boron delivery agents in current clinical use, e.g., significantly improved boron delivery capacity at the cellular level. Simultaneously, the carbohydrate delivery agents were found to bind strongly to plasma proteins, which may be a concern requiring further action before progression to in vivo studies. Altogether, this work brings new insights into factors which need to be accounted for if attempting to develop theranostic agents for BNCT based on carbohydrates in the future.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Carbohidratos , Halogenación , Terapia por Captura de Neutrón de Boro/métodos , Carbohidratos/química , Humanos , Boro/química , Línea Celular Tumoral , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
2.
Food Chem ; 461: 140833, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151349

RESUMEN

Extracellular vesicles (EVs) derived from Thai rat-tailed radish (Raphanus sativus L. var. caudatus Alef) microgreens were previously reported as novel bioactive bioparticles against cancer. This study aimed to investigate the metabolic disruption associated with the antiproliferative effect against HepG2 liver cancer cells, a representative of metabolizing cells and tissue. In this study, the neutral red uptake assay was performed to screen for the antiproliferative effect and determine the cytotoxic concentrations of EVs against HepG2 cells. An untargeted approach to cellular metabolomics was conducted using liquid chromatography coupled with the high-resolution mass spectrometry system with multivariate and univariate analyses to determine the metabolic changes of HepG2 liver cancer cells after EV treatment. EVs showed an antiproliferative effect in HepG2 cells with a half-maximal inhibitory concentration (IC50) of 685.5 ± 26.4 and 139.7 ± 4.2 µg/ml at 24 and 48 h, respectively. In the metabolomics study, 163 metabolites were annotated, with 61 significantly altered metabolites. Among these significant metabolites, 18 were related to glycerophospholipid metabolism. Phosphatidylcholine-the important lipid building blocks for cell membranes, lipid mediators for cell proliferation, and immunosuppressive signaling-was mainly decreased by EV treatment. The alteration of cellular phospholipids in cancer was discussed. This finding suggested the possible mechanism of anticancer action of EVs by disrupting phospholipid metabolism and survival signaling in cancer cells. Further studies should be made to confirm EVs' potential as single and combination therapy in vivo to reduce cancer resistance. This may close the gap between in vitro study and clinical setting.


Asunto(s)
Proliferación Celular , Vesículas Extracelulares , Raphanus , Espectrometría de Masas en Tándem , Humanos , Células Hep G2 , Raphanus/química , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Proliferación Celular/efectos de los fármacos , Metabolómica , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas
3.
Chem Soc Rev ; 53(4): 2099-2210, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38226865

RESUMEN

The delivery of a drug to a specific organ or tissue at an efficacious concentration is the pharmacokinetic (PK) hallmark of promoting effective pharmacological action at a target site with an acceptable safety profile. Sub-optimal pharmaceutical or ADME profiles of drug candidates, which can often be a function of inherently poor physicochemical properties, pose significant challenges to drug discovery and development teams and may contribute to high compound attrition rates. Medicinal chemists have exploited prodrugs as an informed strategy to productively enhance the profiles of new chemical entities by optimizing the physicochemical, biopharmaceutical, and pharmacokinetic properties as well as selectively delivering a molecule to the site of action as a means of addressing a range of limitations. While discovery scientists have traditionally employed prodrugs to improve solubility and membrane permeability, the growing sophistication of prodrug technologies has enabled a significant expansion of their scope and applications as an empowering tool to mitigate a broad range of drug delivery challenges. Prodrugs have emerged as successful solutions to resolve non-linear exposure, inadequate exposure to support toxicological studies, pH-dependent absorption, high pill burden, formulation challenges, lack of feasibility of developing solid and liquid dosage forms, first-pass metabolism, high dosing frequency translating to reduced patient compliance and poor site-specific drug delivery. During the period 2012-2022, the US Food and Drug Administration (FDA) approved 50 prodrugs, which amounts to 13% of approved small molecule drugs, reflecting both the importance and success of implementing prodrug approaches in the pursuit of developing safe and effective drugs to address unmet medical needs.


Asunto(s)
Profármacos , Humanos , Profármacos/farmacología , Profármacos/química , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Solubilidad , Poder Psicológico
4.
Pharmaceutics ; 16(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38258134

RESUMEN

Recent studies have demonstrated that Sirtuin-1 (SIRT-1)-activating molecules exert a protective role in degenerative ocular diseases. However, these molecules hardly reach the back of the eye due to poor solubility in aqueous environments and low bioavailability after topical application on the eye's surface. Such hindrances, combined with stability issues, call for the need for innovative delivery strategies. Within this context, the development of self-nanoemulsifying drug delivery systems (SNEDDS) for SIRT-1 delivery can represent a promising approach. The aim of the work was to design and optimize SNEDDS for the ocular delivery of two natural SIRT-1 agonists, resveratrol (RSV) and melatonin (MEL), with potential implications for treating diabetic retinopathy. Pre-formulation studies were performed by a Design of Experiment (DoE) approach to construct the ternary phase diagram. The optimization phase was carried out using Response Surface Methodology (RSM). Four types of SNEDDS consisting of different surfactants (Tween® 80, Tween® 20, Solutol® HS15, and Cremophor® EL) were optimized to achieve the best physico-chemical parameters for ocular application. Stability tests indicated that SNEDDS produced with Tween® 80 was the formulation that best preserved the stability of molecules, and so it was, therefore, selected for further technological studies. The optimized formulation was prepared with Capryol® PGMC, Tween® 80, and Transcutol® P and loaded with RSV or MEL. The SNEDDS were evaluated for other parameters, such as the mean size (found to be ˂50 nm), size homogeneity (PDI < 0.2), emulsion time (around 40 s), transparency, drug content (>90%), mucoadhesion strength, in vitro drug release, pH and osmolarity, stability to dilution, and cloud point. Finally, an in vitro evaluation was performed on a rabbit corneal epithelial cell line (SIRC) to assess their cytocompatibility. The overall results suggest that SNEDDS can be used as promising nanocarriers for the ocular drug delivery of RSV and MEL.

5.
Eur J Pharm Sci ; 192: 106637, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967656

RESUMEN

Palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, is currently used clinically for treating hormone receptor-positive and human epidermal growth factor receptor 2 negative breast cancer. Additionally, it has the potential to be utilized in the treatment of various tumors, including malignant glioblastoma. Previous research has indicated that palbociclib is a substrate for two efflux transporters, P-glycoprotein (P-gp; MDR1) and breast cancer-resistant protein (BCRP), which restrict the brain exposure of palbociclib. In the present study, our objective was to alter the brain distribution pattern of palbociclib by creating and assessing two novel prodrugs through in vitro, in situ, and in vivo evaluations. To this end, we synthesized two prodrugs of palbociclib by attaching it to the tyrosine promoiety at the para- (PD1) and meta-(PD2) position via a carbamate bond. We hypothesized that the prodrugs could bypass efflux transporter-mediated drug resistance by leveraging the l-type amino acid transporter (LAT1) to facilitate their transport across the blood-brain barrier (BBB) and into cancer cells, such as glioma cells that express LAT1. The compounds PD1 and PD2 did not show selective binding and had limited inhibitory effects on LAT1 in three cell lines (MCF-7, U87-MG, HEK-hLAT1). However, PD1 and PD2 demonstrated the ability to evade efflux mechanisms, and their in vitro uptake profiles were comparable to that of palbociclib, indicating their potential for effective cellular transport. In in situ and in vivo studies, brain uptake was not significantly improved compared to palbociclib, but the pharmacokinetic profiles showed encouraging enhancements. PD1 exhibited a higher AUCbrain/plasma ratio, suggesting safer dosing, while PD2 showed favorable long-acting pharmacokinetics. Although our prodrug design did not significantly improve palbociclib brain delivery due to the potential size limitation of the prodrugs, the study provides valuable insights for future prodrug development and drug delivery strategies targeting specific transporters.


Asunto(s)
Profármacos , Humanos , Profármacos/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Proteínas de Transporte de Membrana/metabolismo
6.
Eur J Pharm Sci ; 195: 106661, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052257

RESUMEN

Temozolomide (TMZ) a DNA alkylating agent, is the standard-of-care for brain tumors, such as glioblastoma multiforme (GBM). Although the physicochemical and pharmacokinetic properties of TMZ, such as chemical stability and the ability to cross the blood-brain barrier (BBB), have been questioned in the past, the acquired chemoresistance has been the main limiting factor of long-term clinical use of TMZ. In the present study, an L-type amino acid transporter 1 (LAT1)-utilizing prodrug of TMZ (TMZ-AA, 6) was prepared and studied for its cellular accumulation and cytotoxic properties in human squamous cell carcinoma, UT-SCC-28 and UT-SCC-42B cells, and TMZ-sensitive human glioma, U-87MG cells that expressed functional LAT1. TMZ-AA 6 accumulated more effectively than TMZ itself into those cancer cells that expressed LAT1 (UT-SCC-42B). However, this did not correlate with decreased viability of treated cells. Indeed, TMZ-AA 6, similarly to TMZ itself, required adjuvant inhibitor(s) of DNA-repair systems, O6-methylguanine-DNA methyl transferase (MGMT) and base excision repair (BER), as well as active DNA mismatch repair (MMR), for maximal growth inhibition. The present study shows that improving the delivery of this widely-used methylating agent is not the main barrier to improved chemotherapy, although utilizing a specific transporter overexpressed at the BBB or glioma cells can have targeting advantages. To obtain a more effective anticancer prodrug, the compound design focus should shift to altering the major DNA alkylation site or inhibiting DNA repair systems.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Profármacos , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Dacarbazina/farmacología , Resistencia a Antineoplásicos , Reparación del ADN , Glioblastoma/tratamiento farmacológico , Glioma/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , ADN , Profármacos/farmacología , Profármacos/uso terapéutico , Línea Celular Tumoral
7.
ACS Omega ; 8(48): 45326-45336, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075748

RESUMEN

Pretargeted concept in positron emission tomography (PET) together with bioorthogonal chemistry is an elegant solution to study processes with slow pharmacokinetics by utilizing radiotracers labeled with short-lived radionuclides. Namely, radiotracers based on tetrazine ligation with trans-cyclooctene (TCO) via the inverse electron demand Diels-Alder (IEDDA) reaction have become a state-of-the-art for the pretargeted PET imaging. For radiolabeling of tetrazine scaffolds, indirect radiofluorination methods are often preferred, as tetrazines are vulnerable to harsh conditions typically necessary for the direct radiofluorination. 18F-Fluoroglycosylation is an indirect radiofluorination method, which allows the introduction of a widely accessible glucose analog 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) to aminooxy-functionalized precursors via oxime formation. Here, we report the biological evaluation of [18F]FDG-Tz as a tracer for pretargeted PET imaging of TCO-functionalized molecular spherical nucleic acids (MSNA) against human epidermal growth factor receptor 2 (HER2) mRNA. The oxime ether formation between [18F]FDG and tetrazine oxyamine resulted in [18F]FDG-Tz with high radiochemical purity (>99%) and moderate yields (6.5 ± 3.6%, n = 5). Biological evaluation of [18F]FDG-Tz in healthy mice indicated favorable pharmacokinetics with quick blood clearance, urinary excretion as the main elimination route, and the absence of GLUT1 transportation. The successful pretargeted experiments with TCO-functionalized MSNA revealed higher tumor uptake compared to preclicked MSNA in HER2-expressing human breast cancer xenograft-bearing mice.

8.
Pharmaceutics ; 15(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38140004

RESUMEN

Interest in the design of boronated amino acids has emerged, partly due to the utilization of boronophenylalanine (BPA), one of the two agents employed in clinical Boron Neutron Capture Therapy (BNCT). The boronated amino acids synthesized thus far for BNCT investigations can be classified into two categories based on the source of boron: boronic acids or carboranes. Amino acid-based boron carriers, employed in the context of BNCT treatment, demonstrate significant potential in the treatment of challenging tumors, such as those located in the brain. This review aims to shed light on the developmental journey and challenges encountered over the years in the field of amino acid-based boron delivery compound development. The primary focus centers on the utilization of the large amino acid transporter 1 (LAT1) as a target for boron carriers in BNCT. The development of efficient carriers remains a critical objective, addressing challenges related to tumor specificity, effective boron delivery, and rapid clearance from normal tissue and blood. LAT1 presents an intriguing and promising target for boron delivery, given its numerous characteristics that make it well suited for drug delivery into tumor tissues, particularly in the case of brain tumors.

9.
J Med Chem ; 66(22): 15094-15114, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37930268

RESUMEN

OATP1C1 (organic anion-transporting polypeptide 1C1) transports thyroid hormones, particularly thyroxine (T4), into human astrocytes. In this study, we investigated the potential of utilizing OATP1C1 to improve the delivery of anti-inflammatory drugs into glial cells. We designed and synthesized eight novel prodrugs by incorporating T4 and 3,5-diiodo-l-tyrosine (DIT) as promoieties to selected anti-inflammatory drugs. The prodrug uptake in OATP1C1-expressing human U-87MG glioma cells demonstrated higher accumulation with T4 promoiety compared to those with DIT promoiety or the parent drugs themselves. In silico models of OATP1C1 suggested dynamic binding for the prodrugs, wherein the pose changed from vertical to horizontal. The predicted binding energies correlated with the transport profiles, with T4 derivatives exhibiting higher binding energies when compared to prodrugs with a DIT promoiety. Interestingly, the prodrugs also showed utilization of oatp1a4/1a5/1a6 in mouse primary astrocytes, which was further supported by docking studies and a great potential for improved brain drug delivery.


Asunto(s)
Transportadores de Anión Orgánico , Profármacos , Animales , Ratones , Humanos , Tiroxina/farmacología , Profármacos/farmacología , Transportadores de Anión Orgánico/metabolismo , Astrocitos/metabolismo , Péptidos/metabolismo , Antiinflamatorios , Aniones/metabolismo
10.
Pharmaceutics ; 15(5)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37242796

RESUMEN

Clozapine (CZP) is the only effective drug in schizophrenia resistant to typical antipsychotics. However, existing dosage forms (oral or orodispersible tablets, suspensions or intramuscular injection) show challenging limitations. After oral administration, CZP has low bioavailability due to a large first-pass effect, while the i.m. route is often painful, with low patient compliance and requiring specialised personnel. Moreover, CZP has a very low aqueous solubility. This study proposes the intranasal route as an alternative route of administration for CZP, through its encapsulation in polymeric nanoparticles (NPs) based on Eudragit® RS100 and RL100 copolymers. Slow-release polymeric NPs with dimensions around 400-500 nm were formulated to reside and release CZP in the nasal cavity, where it can be absorbed through the nasal mucosa and reach the systemic circulation. CZP-EUD-NPs showed a controlled release of CZP for up to 8 h. Furthermore, to reduce mucociliary clearance and increase the residence time of NPs in the nasal cavity to improve drug bioavailability, mucoadhesive NPs were formulated. This study shows that the NPs already exhibited strong electrostatic interactions with mucin at time zero due to the presence of the positive charge of the used copolymers. Furthermore, to improve the solubility, diffusion and adsorption of CZPs and the storage stability of the formulation, it was lyophilised using 5% (w/v) HP-ß-CD as a cryoprotectant. It ensured the preservation of the NPs' size, PDI and charge upon reconstitution. Moreover, physicochemical characterisation studies of solid-state NPs were performed. Finally, toxicity studies were performed in vitro on MDCKII cells and primary human olfactory mucosa cells and in vivo on the nasal mucosa of CD-1 mice. The latter showed non-toxicity of B-EUD-NPs and mild CZP-EUD-NP-induced tissue abnormalities.

11.
Mol Pharm ; 20(6): 3127-3139, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37134022

RESUMEN

Boron neutron capture therapy (BNCT) is a cancer therapy in which boron delivery agents play a crucial role. In theory, delivery agents with high tumor targeting capabilities can lead to selective eradication of tumor cells without causing harmful side effects. We have been working on a GLUT1-targeting strategy to BNCT for a number of years and found multiple promising hit compounds which outperform the clinically employed boron delivery agents in vitro. Herein, we continue our work in the field by further diversification of the carbohydrate scaffold in order to map the optimal stereochemistry of the carbohydrate core. In the sweet battle of the epimers, carborane-bearing d-galactose, d-mannose, and d-allose are synthesized and subjected to in vitro profiling studies─with earlier work on d-glucose serving as the reference. We find that all of the monosaccharide delivery agents display a significantly improved boron delivery capacity over the delivery agents approved for clinical use in vitro, thus providing a sound foundation for advancing toward in vivo preclinical assessment studies.


Asunto(s)
Boranos , Terapia por Captura de Neutrón de Boro , Neoplasias , Humanos , Monosacáridos , Boro , Neoplasias/radioterapia , Compuestos de Boro/química
12.
Mol Pharm ; 20(1): 206-218, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36394563

RESUMEN

L-type amino acid transporter 1 (LAT1) transfers essential amino acids across cell membranes. Owing to its predominant expression in the blood-brain barrier and tumor cells, LAT1 has been exploited for drug delivery and targeting to the central nervous system (CNS) and various cancers. Although the interactions of amino acids and their mimicking compounds with LAT1 have been extensively investigated, the specific structural features for an optimal drug scaffold have not yet been determined. Here, we evaluated a series of LAT1-targeted drug-phenylalanine conjugates (ligands) by determining their uptake rates by in vitro studies and investigating their interaction with LAT1 via induced-fit docking. Combining the experimental and computational data, we concluded that although LAT1 can accommodate various types of structures, smaller compounds are preferred. As the ligand size increased, its flexibility became more crucial in determining the compound's transportability and interactions. Compounds with linear or planar structures exhibited reduced uptake; those with rigid lipophilic structures lacked interactions and likely utilized other transport mechanisms for cellular entry. Introducing polar groups between aromatic structures enhanced interactions. Interestingly, compounds with a carbamate bond in the aromatic ring's para-position displayed very good transport efficiencies for the larger compounds. Compared to the ester bond, the corresponding amide bond had superior hydrogen bond acceptor properties and increased interactions. A reverse amide bond was less favorable than a direct amide bond for interactions with LAT1. The present information can be applied broadly to design appropriate CNS or antineoplastic drug candidates with a prodrug strategy and to discover novel LAT1 inhibitors used either as direct or adjuvant cancer therapy.


Asunto(s)
Fenilalanina , Profármacos , Sistemas de Liberación de Medicamentos , Barrera Hematoencefálica/metabolismo , Aminoácidos/química , Profármacos/química , Transporte Biológico
13.
Eur J Pharm Sci ; 181: 106366, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565891

RESUMEN

Fosamprenavir is a phosphate ester prodrug that, upon dissolution, is cleaved to the poorly soluble yet readily absorbable parent drug amprenavir. In this study, a novel cell-free in vitro setup with quasi-continuous monitoring of the dynamic dissolution/bio-conversion/permeation of fosamprenavir was designed and tested. It consists of side-by-side diffusion cells, where the donor and acceptor compartments are separated by the biomimetic barrier PermeaPad®, and sampling from the donor compartment is accomplished via a microdialysis probe. Externally added bovine alkaline phosphatase induced bioconversion in the donor compartment. Microdialysis sampling allowed to follow the enzymatic conversion of fosamprenavir to amprenavir by the bovine alkaline phosphatase in an (almost) real-time manner eliminating the need to remove or inactivate the enzyme. Biomimetic conversion rates in the setup were established by adding appropriate amounts of the alkaline phosphatase. A substantial (6.5-fold) and persistent supersaturation of amprenavir was observed due to bioconversion at lower (500 µM) concentrations, resulting in a substantially increased flux across the biomimetic barrier, nicely reflecting the situation in vivo. At conditions with an almost 10-fold higher dose than the usual human dose, some replicates showed premature precipitation and collapse of supersaturation, while others did not. In conclusion, the proposed novel tool appears very promising in gaining an in-depth mechanistic understanding of the bioconversion/permeation interplay, including transient supersaturation of phosphate-ester prodrugs like fosamprenavir.


Asunto(s)
Profármacos , Animales , Bovinos , Humanos , Fosfatasa Alcalina , Biomimética , Ésteres , Microdiálisis , Organofosfatos , Fosfatos , Profármacos/metabolismo , Solubilidad
14.
ACS Omega ; 7(34): 30376-30388, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36061667

RESUMEN

Glucose- and sodium-dependent glucose transporters (GLUTs and SGLTs) play vital roles in human biology. Of the 14 GLUTs and 12 SGLTs, the GLUT1 transporter has gained the most widespread recognition because GLUT1 is overexpressed in several cancers and is a clinically valid therapeutic target. We have been pursuing a GLUT1-targeting approach in boron neutron capture therapy (BNCT). Here, we report on surprising findings encountered with a set of 6-deoxy-6-thio-carboranyl d-glucoconjugates. In more detail, we show that even subtle structural changes in the carborane cluster, and the linker, may significantly reduce the delivery capacity of GLUT1-based boron carriers. In addition to providing new insights on the substrate specificity of this important transporter, we reach a fresh perspective on the boundaries within which a GLUT1-targeting approach in BNCT can be further refined.

15.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35955600

RESUMEN

Sesamol is a compound reported to have anti-melanogenesis and anti-melanoma actions. Sesamol, however, has low intracellular drug concentration and fast excretion, which can limit its benefits in the clinic. To overcome this drawback and increase intracellular delivery of sesamol into the target melanoma, research has focused on L-type amino acid transporter 1 (LAT1)-mediated prodrug delivery into melanoma cells. The sesamol prodrug was designed by conjugating sesamol with L-phenylalanine at the para position with a carbamate bond. LAT1 targeting was evaluated vis-à-vis a competitive [14C]-leucine uptake inhibition. The sesamol prodrug has a higher [14C]-leucine uptake inhibition than sesamol in human LAT1-transfected HEK293 cells. Moreover, the sesamol prodrug was taken up by LAT1-mediated transport into SK-MEL-2 cells more effectively than sesamol. The sesamol prodrug underwent complete hydrolysis, releasing the active sesamol at 72 h, which significantly exerted its cytotoxicity (IC50 of 29.3 µM) against SK-MEL-cells more than sesamol alone. Taken together, the strategy for LAT1-mediated prodrug delivery has utility for the selective uptake of sesamol, thereby increasing its intracellular concentration and antiproliferation activity, targeting melanoma SK-MEL-2 cells that overexpress the LAT1 protein. The sesamol prodrug thus warrants further evaluation in an in vivo model.


Asunto(s)
Melanoma , Profármacos , Aminoácidos/metabolismo , Benzodioxoles , Transporte Biológico , Carbamatos/farmacología , Células HEK293 , Humanos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Leucina/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Fenoles , Fenilalanina/metabolismo , Profármacos/química , Profármacos/farmacología , Síndrome
16.
Bioorg Chem ; 112: 104921, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33933805

RESUMEN

l-Type amino acid transporter 1 (LAT1) is an interesting protein due to its peculiar expression profile. It can be utilized not only as a carrier for improved or targeted drug delivery, e.g., into the brain but also as a target protein by which amino acid supply can be restricted, e.g., from the cancer cells. The recognition and binding processes of LAT1-ligands, such as amino acids and clinically used small molecules, including l-dopa, gabapentin, and melphalan, are today well-known. Binding to LAT1 is crucial, particularly when designing the LAT1-inhibitors. However, it will not guarantee effective translocation across the cell membrane via LAT1, which is a definite requirement for LAT1-substrates, such as drugs that elicit their pharmacological effects inside the cells. Therefore, in the present study, the accumulation of known LAT1-utilizing compounds into the selected LAT1-expressing cancer cells (MCF-7) was explored experimentally over a time period. The differences found among the transport efficiency and affinity of the studied compounds for LAT1 were subsequently explained by docking the ligands into the human LAT1 model (based on the recent cryo-electron microscopy structure). Thus, the findings of this study clarify the favorable structural requirements of the size, shape, and polarity of the ligands that support the translocation and effective transport across the cell membrane via LAT1. This knowledge can be applied in future drug design to attain improved or targeted drug delivery and hence, successful LAT1-utilizing drugs with increased therapeutic effects.


Asunto(s)
Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Leucina/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Leucina/química , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
17.
Int J Pharm ; 596: 120300, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33540026

RESUMEN

The prodrug approach targeting influx transporters has been extensively studied as a means of central nervous system drug delivery. Transporter and enzyme expression, localization and activity may contribute to significant species differences in preclinical studies. However, data about the possible species differences in the intra-brain distribution of transporter utilizing compounds is scarce. Here, we investigated the species differences in the intra-brain distribution of an L-type amino acid transporter 1 (LAT1)-utilizing L-lysine analogue of ketoprofen (KPF) (compound 1) and KPF itself by the whole tissue and brain microdialysis methods in mice, and compared the results to those previously reported in rats. Their pharmacodynamic responses in both species were assessed by measuring the brain prostaglandin E2 (PGE2) levels by LC-MS/MS. The intracellular delivery of compound 1 was much lower in mice than in rats. Higher target site concentrations of compound 1 and released KPF were reflected on a more pronounced effect on PGE2 levels in the rat brain. In conclusion, these results highlight the need for cross-species characterization of prodrug pharmacokinetics and pharmacodynamics in preclinical studies.


Asunto(s)
Barrera Hematoencefálica , Espectrometría de Masas en Tándem , Sistema de Transporte de Aminoácidos y+L , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cromatografía Liquida , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Ratones , Ratas , Especificidad de la Especie
18.
Mol Pharm ; 18(1): 285-304, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33390018

RESUMEN

Boron neutron capture therapy (BNCT) is a noninvasive binary therapeutic modality applicable to the treatment of cancers. While BNCT offers a tumor-targeting selectivity that is difficult to match by other means, the last obstacles preventing the full harness of this potential come in the form of the suboptimal boron delivery strategies presently used in the clinics. To address these challenges, we have developed delivery agents that target the glucose transporter GLUT1. Here, we present the chemical synthesis of a number of ortho-carboranylmethyl-substituted glucoconjugates and the biological assessment of all positional isomers. Altogether, the study provides protocols for the synthesis and structural characterization of such glucoconjugates and insights into their essential properties, for example, cytotoxicity, GLUT1-affinity, metabolism, and boron delivery capacity. In addition to solidifying the biochemical foundations of a successful GLUT1-targeting approach to BNCT, we identify the most promising modification sites in d-glucose, which are critical in order to further develop this strategy toward clinical use.


Asunto(s)
Boro/administración & dosificación , Boro/química , Neoplasias Encefálicas/radioterapia , Transportador de Glucosa de Tipo 1/metabolismo , Compuestos de Boro/administración & dosificación , Compuestos de Boro/química , Terapia por Captura de Neutrón de Boro/métodos , Línea Celular Tumoral , Glucosa/metabolismo , Humanos
19.
Pharmaceutics ; 12(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352959

RESUMEN

The treatment of various central nervous system (CNS) diseases has been challenging, despite the rapid development of several novel treatment approaches. The blood-brain barrier (BBB) is one of the major issues in the treatment of CNS diseases, having major role in the protection of the brain but simultaneously constituting the main limiting hurdle for drugs targeting the brain. Nasal drug delivery has gained significant interest for brain targeting over the past decades, wherein the drug is directly delivered to the brain by the trigeminal and olfactory pathway. Various novel and promising formulation approaches have been explored for drug targeting to the brain by nasal administration. Nanoemulsions have the potential to avoid problems, including low solubility, poor bioavailability, slow onset of action, and enzymatic degradation. The present review highlights research scenarios of nanoemulsions for nose-to-brain delivery for the management of CNS ailments classified on the basis of brain disorders and further identifies the areas that remain unexplored. The significance of the total dose delivered to the target region, biodistribution studies, and long-term toxicity studies have been identified as the key areas of future research.

20.
Mol Pharm ; 17(10): 3885-3899, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32787269

RESUMEN

Boron neutron capture therapy (BNCT) for cancer is on the rise worldwide due to recent developments of in-hospital neutron accelerators which are expected to revolutionize patient treatments. There is an urgent need for improved boron delivery agents, and herein we have focused on studying the biochemical foundations upon which a successful GLUT1-targeting strategy to BNCT could be based. By combining synthesis and molecular modeling with affinity and cytotoxicity studies, we unravel the mechanisms behind the considerable potential of appropriately designed glucoconjugates as boron delivery agents for BNCT. In addition to addressing the biochemical premises of the approach in detail, we report on a hit glucoconjugate which displays good cytocompatibility, aqueous solubility, high transporter affinity, and, crucially, an exceptional boron delivery capacity in the in vitro assessment thereby pointing toward the significant potential embedded in this approach.


Asunto(s)
Terapia por Captura de Neutrón de Boro/métodos , Boro/administración & dosificación , Portadores de Fármacos/efectos de la radiación , Glucosa/efectos de la radiación , Isótopos/administración & dosificación , Neoplasias/radioterapia , Boro/farmacocinética , Línea Celular Tumoral , Portadores de Fármacos/síntesis química , Portadores de Fármacos/farmacocinética , Liberación de Fármacos/efectos de la radiación , Glucosa/análogos & derivados , Glucosa/síntesis química , Glucosa/farmacocinética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Isótopos/farmacocinética , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA