Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
iScience ; 23(2): 100831, 2020 Feb 21.
Article En | MEDLINE | ID: mdl-31982780

Metabolism is a key regulator of hematopoietic stem cell (HSC) functions. There is a lack of real-time, non-invasive approaches to evaluate metabolism in single HSCs. Using fluorescence lifetime imaging microscopy, we developed a set of metabolic optical biomarkers (MOBs) from the auto-fluorescent properties of metabolic coenzymes NAD(P)H and FAD. The MOBs revealed the enhanced glycolysis, low oxidative metabolism, and distinct mitochondrial localization of HSCs. Importantly, the fluorescence lifetime of enzyme-bound NAD(P)H (τbound) can non-invasively monitor the glycolytic/lactate dehydrogenase activity in single HSCs. As a proof of concept for metabolism-based cell sorting, we further identified HSCs within the Lineage-cKit+Sca1+ (KLS) hematopoietic stem/progenitor population using MOBs and a machine-learning algorithm. Moreover, we revealed the dynamic changes of MOBs, and the association of longer τbound with enhanced glycolysis under HSC stemness-maintaining conditions during HSC culture. Our work thus provides a new paradigm to identify and track the metabolism of single HSCs non-invasively and in real time.

2.
Structure ; 27(9): 1366-1374.e3, 2019 09 03.
Article En | MEDLINE | ID: mdl-31279628

Tandem repeats are basic building blocks for constructing proteins with diverse structures and functions. Compared with extensively studied α-helix-based tandem repeats such as ankyrin, tetratricopeptide, armadillo, and HEAT repeat proteins, relatively little is known about tandem repeat proteins formed by ß hairpins. In this study, we discovered that the MORN repeats from MORN4 function as a protein binding module specifically recognizing a tail cargo binding region from Myo3a. The structure of the MORN4/Myo3a complex shows that MORN4 forms an extended single-layered ß-sheet structure and uses a U-shaped groove to bind to the Myo3a tail with high affinity and specificity. Sequence and structural analyses further elucidated the unique sequence features for folding and target binding of MORN repeats. Our work establishes that the ß-hairpin-based MORN repeats are protein-protein interaction modules.


Membrane Proteins/chemistry , Membrane Proteins/metabolism , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/metabolism , Tandem Repeat Sequences , Amino Acid Sequence , Animals , Binding Sites , COS Cells , Chlorocebus aethiops , Crystallography, X-Ray , Male , Membrane Proteins/genetics , Models, Molecular , Protein Binding , Protein Conformation, beta-Strand , Protein Domains , Protein Folding
3.
Sci Rep ; 8(1): 8706, 2018 06 07.
Article En | MEDLINE | ID: mdl-29880844

Whole-exome sequencing of samples from affected members of two unrelated families with late-onset non-syndromic hearing loss revealed a novel mutation (c.2090 T > G; NM_017433) in MYO3A. The mutation was confirmed in 36 affected individuals, showing autosomal dominant inheritance. The mutation alters a single residue (L697W or p.Leu697Trp) in the motor domain of the stereocilia protein MYO3A, leading to a reduction in ATPase activity, motility, and an increase in actin affinity. MYO3A-L697W showed reduced filopodial actin protrusion initiation in COS7 cells, and a predominant tipward accumulation at filopodia and stereocilia when coexpressed with wild-type MYO3A and espin-1, an actin-regulatory MYO3A cargo. The combined higher actin affinity and duty ratio of the mutant myosin cause increased retention time at stereocilia tips, resulting in the displacement of the wild-type MYO3A protein, which may impact cargo transport, stereocilia length, and mechanotransduction. The dominant negative effect of the altered myosin function explains the dominant inheritance of deafness.


Genes, Dominant , Genetic Diseases, Inborn/genetics , Hearing Loss/genetics , Mutation, Missense , Myosin Heavy Chains/genetics , Myosin Type III/genetics , Actins/genetics , Actins/metabolism , Adolescent , Adult , Aged , Amino Acid Substitution , Animals , Brazil , COS Cells , Cell Movement/genetics , Child , Chlorocebus aethiops , Female , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , Hearing Loss/metabolism , Hearing Loss/pathology , Humans , Male , Middle Aged , Myosin Heavy Chains/metabolism , Myosin Type III/metabolism , Pseudopodia/genetics , Pseudopodia/metabolism , Pseudopodia/pathology , Stereocilia/genetics , Stereocilia/metabolism , Stereocilia/pathology
5.
J Biol Chem ; 291(43): 22781-22792, 2016 Oct 21.
Article En | MEDLINE | ID: mdl-27582493

Class III myosins (MYO3A and MYO3B) are proposed to function as transporters as well as length and ultrastructure regulators within stable actin-based protrusions such as stereocilia and calycal processes. MYO3A differs from MYO3B in that it contains an extended tail domain with an additional actin-binding motif. We examined how the properties of the motor and tail domains of human class III myosins impact their ability to enhance the formation and elongation of actin protrusions. Direct examination of the motor and enzymatic properties of human MYO3A and MYO3B revealed that MYO3A is a 2-fold faster motor with enhanced ATPase activity and actin affinity. A chimera in which the MYO3A tail was fused to the MYO3B motor demonstrated that motor activity correlates with formation and elongation of actin protrusions. We demonstrate that removal of individual exons (30-34) in the MYO3A tail does not prevent filopodia tip localization but abolishes the ability to enhance actin protrusion formation and elongation in COS7 cells. Interestingly, our results demonstrate that MYO3A slows filopodia dynamics and enhances filopodia lifetime in COS7 cells. We also demonstrate that MYO3A is more efficient than MYO3B at increasing formation and elongation of stable microvilli on the surface of cultured epithelial cells. We propose that the unique features of MYO3A, enhanced motor activity, and an extended tail with tail actin-binding motif, allow it to play an important role in stable actin protrusion length and ultrastructure maintenance.


Actins/metabolism , Myosin Heavy Chains/metabolism , Myosin Type III/metabolism , Pseudopodia/metabolism , Actins/genetics , Animals , COS Cells , Chlorocebus aethiops , Humans , Myosin Heavy Chains/genetics , Myosin Type III/genetics , Pseudopodia/genetics
6.
Nat Commun ; 7: 10833, 2016 Mar 01.
Article En | MEDLINE | ID: mdl-26926603

Hair cells tightly control the dimensions of their stereocilia, which are actin-rich protrusions with graded heights that mediate mechanotransduction in the inner ear. Two members of the myosin-III family, MYO3A and MYO3B, are thought to regulate stereocilia length by transporting cargos that control actin polymerization at stereocilia tips. We show that eliminating espin-1 (ESPN-1), an isoform of ESPN and a myosin-III cargo, dramatically alters the slope of the stereocilia staircase in a subset of hair cells. Furthermore, we show that espin-like (ESPNL), primarily present in developing stereocilia, is also a myosin-III cargo and is essential for normal hearing. ESPN-1 and ESPNL each bind MYO3A and MYO3B, but differentially influence how the two motors function. Consequently, functional properties of different motor-cargo combinations differentially affect molecular transport and the length of actin protrusions. This mechanism is used by hair cells to establish the required range of stereocilia lengths within a single cell.


Microfilament Proteins/metabolism , Myosin Heavy Chains/metabolism , Myosin Type III/metabolism , Stereocilia/physiology , Animals , COS Cells , Chlorocebus aethiops , Ear, Inner/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/genetics , Myosin Heavy Chains/genetics , Myosin Type III/genetics , Rats , Tissue Culture Techniques
7.
Hum Mutat ; 37(5): 481-7, 2016 May.
Article En | MEDLINE | ID: mdl-26841241

Hereditary hearing loss (HL) is characterized by both allelic and locus genetic heterogeneity. Both recessive and dominant forms of HL may be caused by different mutations in the same deafness gene. In a family with post-lingual progressive non-syndromic deafness, whole-exome sequencing of genomic DNA from five hearing-impaired relatives revealed a single variant, p.Gly488Glu (rs145970949:G>A) in MYO3A, co-segregating with HL as an autosomal dominant trait. This amino acid change, predicted to be pathogenic, alters a highly conserved residue in the motor domain of MYO3A. The mutation severely alters the ATPase activity and motility of the protein in vitro, and the mutant protein fails to accumulate in the filopodia tips in COS7 cells. However, the mutant MYO3A was able to reach the tips of organotypic inner ear culture hair cell stereocilia, raising the possibility of a local effect on positioning of the mechanoelectrical transduction (MET) complex at the stereocilia tips. To address this hypothesis, we investigated the interaction of MYO3A with the cytosolic tail of the integral tip-link protein protocadherin 15 (PCDH15), a core component of MET complex. Interestingly, we uncovered a novel interaction between MYO3A and PCDH15 shedding new light on the function of myosin IIIA at stereocilia tips.


Cadherins/metabolism , Deafness/genetics , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Myosin Type III/genetics , Myosin Type III/metabolism , Polymorphism, Single Nucleotide , Amino Acid Substitution , Animals , COS Cells , Cadherin Related Proteins , Cells, Cultured , Child , Child, Preschool , Chlorocebus aethiops , Deafness/metabolism , Female , Genetic Predisposition to Disease , Hair Cells, Auditory, Inner/cytology , Hair Cells, Auditory, Inner/metabolism , Humans , Male , Middle Aged , Pedigree
8.
Elife ; 52016 Jan 19.
Article En | MEDLINE | ID: mdl-26785147

Class III myosins (Myo3) and actin-bundling protein Espin play critical roles in regulating the development and maintenance of stereocilia in vertebrate hair cells, and their defects cause hereditary hearing impairments. Myo3 interacts with Espin1 through its tail homology I motif (THDI), however it is not clear how Myo3 specifically acts through Espin1 to regulate the actin bundle assembly and stabilization. Here we discover that Myo3 THDI contains a pair of repeat sequences capable of independently and strongly binding to the ankyrin repeats of Espin1, revealing an unexpected Myo3-mediated cross-linking mechanism of Espin1. The structures of Myo3 in complex with Espin1 not only elucidate the mechanism of the binding, but also reveal a Myo3-induced release of Espin1 auto-inhibition mechanism. We also provide evidence that Myo3-mediated cross-linking can further promote actin fiber bundling activity of Espin1.


Actins/metabolism , Microfilament Proteins/metabolism , Myosin Heavy Chains/metabolism , Myosin Type III/metabolism , Protein Multimerization , Actins/chemistry , Crystallography, X-Ray , Microfilament Proteins/chemistry , Models, Molecular , Myosin Heavy Chains/chemistry , Myosin Type III/chemistry , Protein Conformation
9.
PLoS One ; 10(3): e0122502, 2015.
Article En | MEDLINE | ID: mdl-25822849

In Drosophila photoreceptors, the NINAC-encoded myosin III is found in a complex with a small, MORN-repeat containing, protein Retinophilin (RTP). Expression of these two proteins in other cell types showed NINAC myosin III behavior is altered by RTP. NINAC deletion constructs were used to map the RTP binding site within the proximal tail domain of NINAC. In vertebrates, the RTP ortholog is MORN4. Co-precipitation experiments demonstrated that human MORN4 binds to human myosin IIIA (MYO3A). In COS7 cells, MORN4 and MYO3A, but not MORN4 and MYO3B, co-localize to actin rich filopodia extensions. Deletion analysis mapped the MORN4 binding to the proximal region of the MYO3A tail domain. MYO3A dependent MORN4 tip localization suggests that MYO3A functions as a motor that transports MORN4 to the filopodia tips and MORN4 may enhance MYO3A tip localization by tethering it to the plasma membrane at the protrusion tips. These results establish conserved features of the RTP/MORN4 family: they bind within the tail domain of myosin IIIs to control their behavior.


Adaptor Proteins, Signal Transducing/metabolism , Invertebrates/metabolism , Myosin Type III/metabolism , Vertebrates/metabolism , Animals , Binding Sites , COS Cells , Cell Line , Cell Membrane/metabolism , Chlorocebus aethiops , Drosophila/metabolism , Drosophila Proteins/metabolism , Eye Proteins/metabolism , Photoreceptor Cells/metabolism , Protein Binding/physiology , Protein Structure, Tertiary , Pseudopodia/metabolism
10.
J Mol Biochem ; 2(1): 40-55, 2013 Feb 20.
Article En | MEDLINE | ID: mdl-23687636

The first half of the surfactant protein B (SP-B) gene intron 4 is a CA-repeat-rich region that contains 11 motifs. To study the role of this region on SP-B mRNA splicing, minigenes were generated by systematic removal of motifs from either the 5' or 3' end. These were transfected in CHO cells to study their splicing efficiency. The latter was determined as the ratio of completely to incompletely spliced SP-B RNA. Our results indicate that SP-B intron 4 motifs differentially affect splicing. Motifs 8 and 9 significantly enhanced and reduced splicing of intron 4, respectively. RNA mobility shift assays performed with a Motif 8 sequence that contains a CAUC cis-element and cell extracts resulted in a RNA:protein shift that was lost upon mutation of the element. Furthermore, in silico analysis of mRNA secondary structure stability for minigenes with and without motif 8 indicated a correlation between mRNA stability and splicing ratio. We conclude that differential loss of specific intron 4 motifs results in one or more of the following: a) altered splicing, b) differences in RNA stability and c) changes in secondary structure. These, in turn, may affect SP-B content in lung health or disease.

11.
Am J Physiol Lung Cell Mol Physiol ; 301(5): L795-803, 2011 Nov.
Article En | MEDLINE | ID: mdl-21840962

Two human genes, SFTPA1 (SP-A1) and SFTPA2 (SP-A2), encode surfactant protein A, a molecule of innate immunity and surfactant-related functions. Several genetic variants have been identified for both genes. These include nucleotide (nt) polymorphisms, as well as alternative splicing patterns at the 5' untranslated region (5'UTR). Exon B (eB) is included in the 5'UTR of most SP-A2, but not SP-A1 splice variants. We investigated the role of eB in the regulation of gene expression and translation efficiency. A luciferase (Luc) reporter gene was cloned downstream of the entire (AeBD) or eB deletion mutants (del_mut) of the SP-A2 5'UTR, or heterologous 5'UTRs containing the eB sequence, or a random sequence of equal length. The del_mut constructs consisted in consecutive deletions of five nucleotides (n = 8) within eB and the exon-exon junctions in the AeBD 5'UTR. Luc activities and mRNA levels were compared after transfection of NCI-H441 cells. We found that 1) eB increased Luc mRNA levels when placed upstream of heterologous 5'UTR sequences or the promoter region, regardless of its position and orientation; 2) translation efficiency of in vitro-generated mRNAs containing eB was higher than that of mRNAs without eB; and 3) the integrity of eB sequence is crucial for transcription and translation of the reporter gene. Thus eB 1) is a transcription enhancer, because it increases mRNA content regardless of position and orientation, 2) enhances translation when placed in either orientation within its natural 5'UTR sequence and in heterologous 5'UTRs, and 3) contains potential regulatory elements for both transcription and translation. We conclude that eB sequence and length are determinants of transcription and translation efficiency.


Adenocarcinoma/genetics , Exons , Lung Neoplasms/genetics , Protein Biosynthesis/genetics , Pulmonary Surfactant-Associated Protein A/genetics , Transcription, Genetic , 5' Untranslated Regions , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Alternative Splicing , Cell Line, Tumor , Genes, Reporter , Humans , Luciferases/analysis , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Sequence Data , Plasmids , Pulmonary Surfactant-Associated Protein A/chemistry , Pulmonary Surfactant-Associated Protein A/metabolism , Real-Time Polymerase Chain Reaction , Regulatory Sequences, Nucleic Acid , Sequence Deletion , Transfection
...