Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732490

RESUMEN

This study investigates the genetic determinants of seed coat color and pattern variations in cowpea (Vigna unguiculata), employing a genome-wide association approach. Analyzing a mapping panel of 296 cowpea varieties with 110,000 single nucleotide polymorphisms (SNPs), we focused on eight unique coat patterns: (1) Red and (2) Cream seed; (3) White and (4) Brown/Tan seed coat; (5) Pink, (6) Black, (7) Browneye and (8) Red/Brown Holstein. Across six GWAS models (GLM, SRM, MLM, MLMM, FarmCPU from GAPIT3, and TASSEL5), 13 significant SNP markers were identified and led to the discovery of 23 candidate genes. Among these, four specific genes may play a direct role in determining seed coat pigment. These findings lay a foundational basis for future breeding programs aimed at creating cowpea varieties aligned with consumer preferences and market requirements.

2.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894961

RESUMEN

Cowpea (Vigna unguiculata (L.) Walp.) is a diploid legume crop used for human consumption, feed for livestock, and cover crops. Earlier reports have shown that salinity has been a growing threat to cowpea cultivation. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify SNP markers and to investigate candidate genes for salt tolerance in cowpea. A total of 331 cowpea genotypes were evaluated for salt tolerance by supplying a solution of 200 mM NaCl in our previous work. The cowpea panel was genotyped using a whole genome resequencing approach, generating 14,465,516 SNPs. Moreover, 5,884,299 SNPs were used after SNP filtering. GWAS was conducted on a total of 296 cowpea genotypes that have high-quality SNPs. BLINK was used for conducting GWAS. Results showed (1) a strong GWAS peak on an 890-bk region of chromosome 2 for leaf SPAD chlorophyll under salt stress in cowpea and harboring a significant cluster of nicotinamide adenine dinucleotide (NAD) dependent epimerase/dehydratase genes such as Vigun02g128900.1, Vigun02g129000.1, Vigun02g129100.1, Vigun02g129200.1, and Vigun02g129500.1; (2) two GWAS peaks associated with relative tolerance index for chlorophyll were identified on chromosomes 1 and 2. The peak on chromosome 1 was defined by a cluster of 10 significant SNPs mapped on a 5 kb region and was located in the vicinity of Vigun01g086000.1, encoding for a GATA transcription factor. The GWAS peak on chromosome 2 was defined by a cluster of 53 significant SNPs and mapped on a 68 bk region of chromosome 2, and (3) the highest GWAS peak was identified on chromosome 3, and this locus was associated with leaf score injury. This peak was within the structure of a potassium channel gene (Vigun03g144700.1). To the best of our knowledge, this is one the earliest reports on the salt tolerance study of cowpea using whole genome resequencing data.


Asunto(s)
Vigna , Humanos , Vigna/genética , Plantones/genética , Estudio de Asociación del Genoma Completo , Tolerancia a la Sal/genética , Clorofila
3.
Plants (Basel) ; 12(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37514320

RESUMEN

Cowpea (Vigna unguiculata L. Walp., 2n = 2x = 22) is a protein-rich crop that complements staple cereals for humans and serves as fodder for livestock. It is widely grown in Africa and other developing countries as the primary source of protein in the diet; therefore, it is necessary to identify the protein-related loci to improve cowpea breeding. In the current study, we conducted a genome-wide association study (GWAS) on 161 cowpea accessions (151 USDA germplasm plus 10 Arkansas breeding lines) with a wide range of seed protein contents (21.8~28.9%) with 110,155 high-quality whole-genome single-nucleotide polymorphisms (SNPs) to identify markers associated with protein content, then performed genomic prediction (GP) for future breeding. A total of seven significant SNP markers were identified using five GWAS models (single-marker regression (SMR), the general linear model (GLM), Mixed Linear Model (MLM), Fixed and Random Model Circulating Probability Unification (FarmCPU), and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), which are located at the same locus on chromosome 8 for seed protein content. This locus was associated with the gene Vigun08g039200, which was annotated as the protein of the thioredoxin superfamily, playing a critical function for protein content increase and nutritional quality improvement. In this study, a genomic prediction (GP) approach was employed to assess the accuracy of predicting seed protein content in cowpea. The GP was conducted using cross-prediction with five models, namely ridge regression best linear unbiased prediction (rrBLUP), Bayesian ridge regression (BRR), Bayesian A (BA), Bayesian B (BB), and Bayesian least absolute shrinkage and selection operator (BL), applied to seven random whole genome marker sets with different densities (10 k, 5 k, 2 k, 1 k, 500, 200, and 7), as well as significant markers identified through GWAS. The accuracies of the GP varied between 42.9% and 52.1% across the seven SNPs considered, depending on the model used. These findings not only have the potential to expedite the breeding cycle through early prediction of individual performance prior to phenotyping, but also offer practical implications for cowpea breeding programs striving to enhance seed protein content and nutritional quality.

5.
Front Plant Sci ; 13: 882732, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783963

RESUMEN

Soybean is a primary meal protein for human consumption, poultry, and livestock feed. In this study, quantitative trait locus (QTL) controlling protein content was explored via genome-wide association studies (GWAS) and linkage mapping approaches based on 284 soybean accessions and 180 recombinant inbred lines (RILs), respectively, which were evaluated for protein content for 4 years. A total of 22 single nucleotide polymorphisms (SNPs) associated with protein content were detected using mixed linear model (MLM) and general linear model (GLM) methods in Tassel and 5 QTLs using Bayesian interval mapping (IM), single-trait multiple interval mapping (SMIM), single-trait composite interval mapping maximum likelihood estimation (SMLE), and single marker regression (SMR) models in Q-Gene and IciMapping. Major QTLs were detected on chromosomes 6 and 20 in both populations. The new QTL genomic region on chromosome 6 (Chr6_18844283-19315351) included 7 candidate genes and the Hap.X AA at the Chr6_19172961 position was associated with high protein content. Genomic selection (GS) of protein content was performed using Bayesian Lasso (BL) and ridge regression best linear unbiased prediction (rrBULP) based on all the SNPs and the SNPs significantly associated with protein content resulted from GWAS. The results showed that BL and rrBLUP performed similarly; GS accuracy was dependent on the SNP set and training population size. GS efficiency was higher for the SNPs derived from GWAS than random SNPs and reached a plateau when the number of markers was >2,000. The SNP markers identified in this study and other information were essential in establishing an efficient marker-assisted selection (MAS) and GS pipelines for improving soybean protein content.

6.
Front Genet ; 13: 853114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711938

RESUMEN

Common bean (Phaseolus vulgaris) is one of the major legume crops cultivated worldwide. Bacterial wilt (BW) of common bean (Curtobacterium flaccumfaciens pv. flaccumfaciens), being a seed-borne disease, has been a challenge in common bean producing regions. A genome-wide association study (GWAS) was conducted to identify SNP markers associated with BW resistance in the USDA common bean core collection. A total of 168 accessions were evaluated for resistance against three different isolates of BW. Our study identified a total of 14 single nucleotide polymorphism (SNP) markers associated with the resistance to BW isolates 528, 557, and 597 using mixed linear models (MLMs) in BLINK, FarmCPU, GAPIT, and TASSEL 5. These SNPs were located on chromosomes Phaseolus vulgaris [Pv]02, Pv04, Pv08, and Pv09 for isolate 528; Pv07, Pv10, and Pv11 for isolate 557; and Pv04, Pv08, and Pv10 for isolate 597. The genomic prediction accuracy was assessed by utilizing seven GP models with 1) all the 4,568 SNPs and 2) the 14 SNP markers. The overall prediction accuracy (PA) ranged from 0.30 to 0.56 for resistance against the three BW isolates. A total of 14 candidate genes were discovered for BW resistance located on chromosomes Pv02, Pv04, Pv07, Pv08, and Pv09. This study revealed vital information for developing genetic resistance against the BW pathogen in common bean. Accordingly, the identified SNP markers and candidate genes can be utilized in common bean molecular breeding programs to develop novel resistant cultivars.

7.
BMC Genomics ; 23(1): 100, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123403

RESUMEN

BACKGROUND: Previous reports have shown that soil salinity is a growing threat to cowpea production, and thus the need for breeding salt-tolerant cowpea cultivars. A total of 234 Multi-Parent Advanced Generation Inter-Cross (MAGIC) lines along with their 8 founders were evaluated for salt tolerance under greenhouse conditions. The objectives of this study were to evaluate salt tolerance in a multi-parent advanced generation inter-cross (MAGIC) cowpea population, to identify single nucleotide polymorphism (SNP) markers associated with salt tolerance, and to assess the accuracy of genomic selection (GS) in predicting salt tolerance, and to explore possible epistatic interactions affecting salt tolerance in cowpea. Phenotyping was validated through the use of salt-tolerant and salt-susceptible controls that were previously reported. Genome-wide association study (GWAS) was conducted using a total of 32,047 filtered SNPs. The epistatic interaction analysis was conducted using the PLINK platform. RESULTS: Results indicated that: (1) large variation in traits evaluated for salt tolerance was identified among the MAGIC lines, (2) a total of 7, 2, 18, 18, 3, 2, 5, 1, and 23 were associated with number of dead plants, salt injury score, leaf SPAD chlorophyll under salt treatment, relative tolerance index for leaf SPAD chlorophyll, fresh leaf biomass under salt treatment, relative tolerance index for fresh leaf biomass, relative tolerance index for fresh stem biomass, relative tolerance index for the total above-ground fresh biomass, and relative tolerance index for plant height, respectively, with overlapping SNP markers between traits, (3) candidate genes encoding for proteins involved in ion transport such as Na+/Ca2+ K+ independent exchanger and H+/oligopeptide symporter were identified, and (4) epistatic interactions were identified. CONCLUSIONS: These results will have direct applications in breeding programs aiming at improving salt tolerance in cowpea through marker-assisted selection. To the best of our knowledge, this study was one of the earliest reports using a MAGIC population to investigate the genetic architecture of salt tolerance in cowpea.


Asunto(s)
Tolerancia a la Sal , Vigna , Estudio de Asociación del Genoma Completo , Humanos , Padres , Fenotipo , Polimorfismo de Nucleótido Simple , Tolerancia a la Sal/genética , Vigna/genética
8.
PLoS One ; 16(8): e0255761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34388193

RESUMEN

Soybean [Glycine max (L.) Merr.] is a crop of great interest worldwide. Exploring molecular approaches to increase yield genetic gain has been one of the main challenges for soybean breeders and geneticists. Agronomic traits such as maturity, plant height, and seed weight have been found to contribute to yield. In this study, a total of 250 soybean accessions were genotyped with 10,259 high-quality SNPs postulated from genotyping by sequencing (GBS) and evaluated for grain yield, maturity, plant height, and seed weight over three years. A genome-wide association study (GWAS) was performed using a Bayesian Information and Linkage Disequilibrium Iteratively Nested Keyway (BLINK) model. Genomic selection (GS) was evaluated using a ridge regression best linear unbiased predictor (rrBLUP) model. The results revealed that 20, 31, 37, and 23 SNPs were significantly associated with maturity, plant height, seed weight, and yield, respectively; Many SNPs were mapped to previously described maturity and plant height loci (E2, E4, and Dt1) and a new plant height locus was mapped to chromosome 20. Candidate genes were found in the vicinity of the two SNPs with the highest significant levels associated with yield, maturity, plant height, seed weight, respectively. A 11.5-Mb region of chromosome 10 was associated with both yield and seed weight. Overall, the accuracy of GS was dependent on the trait, year, and population structure, and high accuracy indicates that these agronomic traits can be selected in molecular breeding through GS. The SNP markers identified in this study can be used to improve yield and agronomic traits through the marker-assisted selection and GS in breeding programs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max/genética , Sitios de Carácter Cuantitativo/genética , Semillas/genética , Genoma de Planta/genética , Genómica , Desequilibrio de Ligamiento/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Semillas/crecimiento & desarrollo , Selección Genética/genética , Glycine max/crecimiento & desarrollo
9.
Hortic Res ; 8(1): 24, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33518704

RESUMEN

Cowpea is a nutrient-dense legume that significantly contributes to the population's diet in sub-Saharan Africa and other regions of the world. Improving cowpea cultivars to be more resilient to abiotic stress such as drought would be of great importance. The use of a multi-parent advanced generation intercross (MAGIC) population has been shown to be efficient in increasing the frequency of rare alleles that could be associated with important agricultural traits. In addition, drought tolerance index has been reported to be a reliable parameter for assessing crop tolerance to water-deficit conditions. Therefore, the objectives of this study were to evaluate the drought tolerance index for plant growth habit, plant maturity, flowering time, 100-seed weight, and grain yield in a MAGIC cowpea population, to conduct genome-wide association study (GWAS) and identify single nucleotide polymorphism (SNP) markers associated with the drought tolerance indices, to investigate the potential relationship existing between the significant loci associated with the drought tolerance indices, and to conduct genomic selection (GS). These analyses were performed using the existing phenotypic and genotypic data published for the MAGIC population which consisted of 305 F8 recombinant inbred lines (RILs) developed at University of California, Riverside. The results indicated that: (1) large variation in drought tolerance indices existed among the cowpea genotypes, (2) a total of 14, 18, 5, 5, and 35 SNPs were associated with plant growth habit change due to drought stress, and drought tolerance indices for maturity, flowering time, 100-seed weight, and grain yield, respectively, (3) the network-guided approach revealed clear interactions between the loci associated with the drought tolerance traits, and (4) the GS accuracy varied from low to moderate. These results could be applied to improve drought tolerance in cowpea through marker-assisted selection (MAS) and genomic selection (GS). To the best of our knowledge, this is the first report on marker loci associated with drought tolerance indices in cowpea.

10.
PLoS One ; 15(7): e0235089, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32673346

RESUMEN

Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is one of the most devastating pathogens affecting soybean production in the U.S. and worldwide. The use of SCN-resistant soybean cultivars is one of the most affordable strategies to cope with SCN infestation. Because of the limited sources of SCN resistance and changes in SCN virulence phenotypes, host resistance in current cultivars has increasingly been overcome by the pathogen. Host tolerance has been recognized as an additional tool to manage the SCN. The objectives of this study were to conduct a genome-wide association study (GWAS), to identify single nucleotide polymorphism (SNP) markers, and to perform a genomic selection (GS) study for SCN tolerance in soybean based on reduction in biomass. A total of 234 soybean genotypes (lines) were evaluated for their tolerance to SCN in greenhouse using four replicates. The tolerance index (TI = 100 × Biomass of a line in SCN infested / Biomass of the line without SCN) was used as phenotypic data of SCN tolerance. GWAS was conducted using a total of 3,782 high quality SNPs. GS was performed based upon the whole set of SNPs and the GWAS-derived SNPs, respectively. Results showed that (1) a large variation in soybean TI to SCN infection among the soybean genotypes was identified; (2) a total of 35, 21, and 6 SNPs were found to be associated with SCN tolerance using the models SMR, GLM (PCA), and MLM (PCA+K) with 6 SNPs overlapping between models; (3) GS accuracy was SNP set-, model-, and training population size-dependent; and (4) genes around Glyma.06G134900, Glyma.15G097500.1, Glyma.15G100900.3, Glyma.15G105400, Glyma.15G107200, and Glyma.19G121200.1 (Table 4). Glyma.06G134900, Glyma.15G097500.1, Glyma.15G100900.3, Glyma.15G105400, and Glyma.19G121200.1 are best candidates. To the best of our knowledge, this is the first report highlighting SNP markers associated with tolerance index based on biomass reduction under SCN infestation in soybean. This research opens a new approach to use SCN tolerance in soybean breeding and the SNP markers will provide a tool for breeders to select for SCN tolerance.


Asunto(s)
Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Glycine max/genética , Tylenchoidea/patogenicidad , Animales , Biomasa , Genes de Plantas , Marcadores Genéticos , Genoma de Planta , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Infecciones por Secernentea/prevención & control , Glycine max/parasitología
11.
Plant Physiol Biochem ; 148: 1-9, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31923733

RESUMEN

Sweet potato [Ipomoea batatas (L.) Lam.] (2n = 6x = 90) is an economic important autopolyploid species and its varieties differ regarding storage root skin and flesh colors. Two sweet potato genetic lines, Sushu8 (with red skin) and its mutant Zhengshu20, which produced different colored storage roots, were used in this study. The total flavonoid, carotenoid, and anthocyanin contents of the two lines were analyzed and revealed that anthocyanin was primarily responsible for the skin color difference. In addition, the early storage root expanding stage was the key period for anthocyanin accumulation in Sushu8. A total of 24 samples, including the skins of the fibrous root and the storage root at the early and middle expanding stages as well as the flesh of the storage root at the middle expanding stage, were analyzed based on differentially expressed genes identified by transcriptome sequencing and a weighted gene co-expression network analysis. Two gene modules highly related with the regulation of sweet potato skin color through stress responses as well as starch synthesis and glucose metabolism were identified. Furthermore, the WRKY75 transcription factor gene, fructose-bisphosphate aldolase 2 gene, and other DEGs highly related to the regulation of anthocyanin metabolism were enriched in the brown and green modules.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ipomoea batatas , Pigmentación , Antocianinas/genética , Antocianinas/metabolismo , Carotenoides/metabolismo , Flavonoides/genética , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Mutación , Pigmentación/genética , Factores de Transcripción/genética
12.
Front Plant Sci ; 10: 1445, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803203

RESUMEN

Soybean is a major source of protein for human consumption and animal feed. Releasing new cultivars with high nutritional value is one of the major goals in soybean breeding. To achieve this goal, genome-wide association studies of seed amino acid contents were conducted based on 249 soybean accessions from China, US, Japan, and South Korea. The accessions were evaluated for 15 amino acids and genotyped by sequencing. Significant genetic variation was observed for amino acids among the accessions. Among the 231 single nucleotide polymorphisms (SNPs) significantly associated with variations in amino acid contents, fifteen SNPs localized near 14 candidate genes involving in amino acid metabolism. The amino acids were classified into two groups with five in one group and seven amino acids in the other. Correlation coefficients among the amino acids within each group were high and positive, but the correlation coefficients of amino acids between the two groups were negative. Twenty-five SNP markers associated with multiple amino acids can be used to simultaneously improve multi-amino acid concentration in soybean. Genomic selection analysis of amino acid concentration showed that selection efficiency of amino acids based on the markers significantly associated with all 15 amino acids was higher than that based on random markers or markers only associated with individual amino acid. The identified markers could facilitate selection of soybean varieties with improved seed quality.

13.
BMC Genomics ; 20(1): 904, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775625

RESUMEN

BACKGROUND: Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, has been one of the most devastating pathogens affecting soybean production. In the United States alone, SCN damage accounted for more than $1 billion loss annually. With a narrow genetic background of the currently available SCN-resistant commercial cultivars, high risk of resistance breakdown can occur. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify QTL, SNP markers, and candidate genes associated with soybean leaf chlorophyll content tolerance to SCN infection, and to carry out a genomic selection (GS) study for the chlorophyll content tolerance. RESULTS: A total of 172 soybean genotypes were evaluated for the effect of SCN HG Type 1.2.3.5.6.7 (race 4) on soybean leaf chlorophyll. The soybean lines were genotyped using a total of 4089 filtered and high-quality SNPs. Results showed that (1) a large variation in SCN tolerance based on leaf chlorophyll content indices (CCI); (2) a total of 22, 14, and 16 SNPs associated with CCI of non-SCN-infected plants, SCN-infected plants, and reduction of CCI SCN, respectively; (3) a new locus of chlorophyll content tolerance to SCN mapped on chromosome 3; (4) candidate genes encoding for Leucine-rich repeat protein, plant hormone signaling molecules, and biomolecule transporters; and (5) an average GS accuracy ranging from 0.31 to 0.46 with all SNPs and varying from 0.55 to 0.76 when GWAS-derived SNP markers were used across five models. This study demonstrated the potential of using genome-wide selection to breed chlorophyll-content-tolerant soybean for managing SCN. CONCLUSIONS: In this study, soybean accessions with higher CCI under SCN infestation, and molecular markers associated with chlorophyll content related to SCN were identified. In addition, a total of 15 candidate genes associated with chlorophyll content tolerance to SCN in soybean were also identified. These candidate genes will lead to a better understanding of the molecular mechanisms that control chlorophyll content tolerance to SCN in soybean. Genomic selection analysis of chlorophyll content tolerance to SCN showed that using significant SNPs obtained from GWAS could provide better GS accuracy.


Asunto(s)
Clorofila/metabolismo , Genoma de Planta , Estudio de Asociación del Genoma Completo , Genómica , Glycine max/genética , Glycine max/metabolismo , Interacciones Huésped-Parásitos/genética , Animales , Genes de Plantas , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética , Glycine max/parasitología , Tylenchoidea
14.
Theor Appl Genet ; 131(1): 79-91, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28948303

RESUMEN

KEY MESSAGE: This is the first report on association analysis of salt tolerance and identification of SNP markers associated with salt tolerance in cowpea. Cowpea (Vigna unguiculata (L.) Walp) is one of the most important cultivated legumes in Africa. The worldwide annual production in cowpea dry seed is 5.4 million metric tons. However, cowpea is unfavorably affected by salinity stress at germination and seedling stages, which is exacerbated by the effects of climate change. The lack of knowledge on the genetic underlying salt tolerance in cowpea limits the establishment of a breeding strategy for developing salt-tolerant cowpea cultivars. The objectives of this study were to conduct association mapping for salt tolerance at germination and seedling stages and to identify SNP markers associated with salt tolerance in cowpea. We analyzed the salt tolerance index of 116 and 155 cowpea accessions at germination and seedling stages, respectively. A total of 1049 SNPs postulated from genotyping-by-sequencing were used for association analysis. Population structure was inferred using Structure 2.3.4; K optimal was determined using Structure Harvester. TASSEL 5, GAPIT, and FarmCPU involving three models such as single marker regression, general linear model, and mixed linear model were used for the association study. Substantial variation in salt tolerance index for germination rate, plant height reduction, fresh and dry shoot biomass reduction, foliar leaf injury, and inhibition of the first trifoliate leaf was observed. The cowpea accessions were structured into two subpopulations. Three SNPs, Scaffold87490_622, Scaffold87490_630, and C35017374_128 were highly associated with salt tolerance at germination stage. Seven SNPs, Scaffold93827_270, Scaffold68489_600, Scaffold87490_633, Scaffold87490_640, Scaffold82042_3387, C35069468_1916, and Scaffold93942_1089 were found to be associated with salt tolerance at seedling stage. The SNP markers were consistent across the three models and could be used as a tool to select salt-tolerant lines for breeding improved cowpea tolerance to salinity.


Asunto(s)
Germinación , Tolerancia a la Sal/genética , Plantones/fisiología , Vigna/genética , Marcadores Genéticos , Variación Genética , Genética de Población , Genotipo , Modelos Genéticos , Filogenia , Polimorfismo de Nucleótido Simple , Vigna/fisiología
15.
BMC Genomics ; 18(1): 941, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29202697

RESUMEN

BACKGROUND: Spinach is a useful source of dietary vitamins and mineral elements. Breeding new spinach cultivars with high nutritional value is one of the main goals in spinach breeding programs worldwide, and identification of single nucleotide polymorphism (SNP) markers for mineral element concentrations is necessary to support spinach molecular breeding. The purpose of this study was to conduct a genome-wide association study (GWAS) and to identify SNP markers associated with mineral elements in the USDA-GRIN spinach germplasm collection. RESULTS: A total of 14 mineral elements: boron (B), calcium (Ca), cobalt (Co), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), nickel (Ni), phosphorus (P), sulfur (S), and zinc (Zn) were evaluated in 292 spinach accessions originally collected from 29 countries. Significant genetic variations were found among the tested genotypes as evidenced by the 2 to 42 times difference in mineral concentrations. A total of 2402 SNPs identified from genotyping by sequencing (GBS) approach were used for genetic diversity and GWAS. Six statistical methods were used for association analysis. Forty-five SNP markers were identified to be strongly associated with the concentrations of 13 mineral elements. Only two weakly associated SNP markers were associated with K concentration. Co-localized SNPs for different elemental concentrations were discovered in this research. Three SNP markers, AYZV02017731_40, AYZV02094133_57, and AYZV02281036_185 were identified to be associated with concentrations of four mineral components, Co, Mn, S, and Zn. There is a high validating correlation coefficient with r > 0.7 among concentrations of the four elements. Thirty-one spinach accessions, which rank in the top three highest concentrations in each of the 14 mineral elements, were identified as potential parents for spinach breeding programs in the future. CONCLUSIONS: The 45 SNP markers strongly associated with the concentrations of the 13 mineral elements: B, Ca, Co, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, S, and Zn could be used in breeding programs to improve the nutritional quality of spinach through marker-assisted selection (MAS). The 31 spinach accessions with high concentrations of one to several mineral elements can be used as potential parents for spinach breeding programs.


Asunto(s)
Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Minerales/química , Hojas de la Planta/química , Polimorfismo de Nucleótido Simple , Spinacia oleracea/química , Spinacia oleracea/genética , Fitomejoramiento , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Análisis de Secuencia de ADN/métodos , Spinacia oleracea/crecimiento & desarrollo
16.
PLoS One ; 12(11): e0188745, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29190770

RESUMEN

Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs.


Asunto(s)
Variación Genética , Genotipo , Polimorfismo de Nucleótido Simple , Spinacia oleracea/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...