Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Biomolecules ; 13(4)2023 03 25.
Article En | MEDLINE | ID: mdl-37189342

The peripheral nervous system (PNS) has a unique ability for self-repair. Dorsal root ganglion (DRG) neurons regulate the expression of different molecules, such as neurotrophins and their receptors, to promote axon regeneration after injury. However, the molecular players driving axonal regrowth need to be better defined. The membrane glycoprotein GPM6a has been described to contribute to neuronal development and structural plasticity in central-nervous-system neurons. Recent evidence indicates that GPM6a interacts with molecules from the PNS, although its role in DRG neurons remains unknown. Here, we characterized the expression of GPM6a in embryonic and adult DRGs by combining analysis of public RNA-seq datasets with immunochemical approaches utilizing cultures of rat DRG explants and dissociated neuronal cells. M6a was detected on the cell surfaces of DRG neurons throughout development. Moreover, GPM6a was required for DRG neurite elongation in vitro. In summary, we provide evidence on GPM6a being present in DRG neurons for the first time. Data from our functional experiments support the idea that GPM6a could contribute to axon regeneration in the PNS.


Axons , Ganglia, Spinal , Rats , Animals , Axons/metabolism , Ganglia, Spinal/metabolism , Cells, Cultured , Nerve Regeneration , Neurons/metabolism , Membrane Glycoproteins/metabolism , Neuronal Outgrowth
2.
Cell Death Dis ; 13(12): 1058, 2022 12 20.
Article En | MEDLINE | ID: mdl-36539405

Alterations in phospholipids have long been associated with spinal cord injury (SCI). However, their specific roles and signaling cascades in mediating cell death and tissue repair remain unclear. Here we investigated whether alterations of cardiolipin (CL), a family of mitochondrion-specific phospholipids, play a crucial role in mitochondrial dysfunction and neuronal death following SCI. Lipidomic analysis was used to determine the profile of CL alteration in the adult rat spinal cord following a moderate contusive SCI at the 10th thoracic (T10) level. Cellular, molecular, and genetic assessments were performed to determine whether CL alterations mediate mitochondrial dysfunction and neuronal death after SCI, and, if so, whether reversing CL alteration leads to neuroprotection after SCI. Using lipidomic analysis, we uncovered CL alterations at an early stage of SCI. Over 50 distinct CL species were identified, of which 50% showed significantly decreased abundance after SCI. The decreased CL species contained mainly polyunsaturated fatty acids that are highly susceptible to peroxidation. In parallel, 4-HNE, a lipid peroxidation marker, significantly increased after SCI. We found that mitochondrial oxidative stress not only induced CL oxidation, but also resulted in CL loss by activating cPLA2 to hydrolyze CL. CL alterations induced mitochondrial dysfunction and neuronal death. Remarkably, pharmacologic inhibition of CL alterations with XJB-5-131, a novel mitochondria-targeted electron and reactive oxygen species scavenger, reduced cell death, tissue damage and ameliorated motor deficits after SCI in adult rats. These findings suggest that CL alteration could be a novel mechanism that mediates injury-induced neuronal death, and a potential therapeutic target for ameliorating secondary SCI.


Cardiolipins , Spinal Cord Injuries , Rats , Animals , Cardiolipins/metabolism , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Cell Death , Mitochondria/metabolism , Phospholipids/metabolism , Homeostasis
3.
Exp Neurol ; 349: 113962, 2022 03.
Article En | MEDLINE | ID: mdl-34953895

Propriospinal neurons (PSNs) play a crucial role in motor control and sensory processing and contribute to plastic reorganization of spinal circuits responsible for recovery from spinal cord injury (SCI). Due to their scattered distribution and various intersegmental projection patterns, it is challenging to dissect the function of PSNs within the neuronal network. New genetically encoded tools, particularly cell-type-specific transgene expression methods using recombinant viral vectors combined with other genetic, pharmacologic, and optogenetic approaches, have enormous potential for visualizing PSNs in the neuronal circuits and monitoring and manipulating their activity. Furthermore, recombinant viral tools have been utilized to promote the intrinsic regenerative capacities of PSNs, towards manipulating the 'hostile' microenvironment for improving functional regeneration of PSNs. Here we summarize the latest development in this fast-moving field and provide a perspective for using this technology to dissect PSN physiological role in contributing to recovery of function after SCI.


Gene Transfer Techniques , Neuronal Plasticity , Neurons , Proprioception , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Spinal Cord/physiopathology , Animals , Genetic Vectors , Humans , Nerve Net/physiopathology , Nerve Regeneration , Neural Pathways/physiopathology , Spinal Cord Injuries/genetics
...