Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Sci Rep ; 14(1): 14571, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914599

RESUMEN

The study aimed to achieve the following objectives: (1) to perform the fusion of thermal and visible tongue images with various fusion rules of discrete wavelet transform (DWT) to classify diabetes and normal subjects; (2) to obtain the statistical features in the required region of interest from the tongue image before and after fusion; (3) to distinguish the healthy and diabetes using fused tongue images based on deep and machine learning algorithms. The study participants comprised of 80 normal subjects and age- and sex-matched 80 diabetes patients. The biochemical tests such as fasting glucose, postprandial, Hba1c are taken for all the participants. The visible and thermal tongue images are acquired using digital single lens reference camera and thermal infrared cameras, respectively. The digital and thermal tongue images are fused based on the wavelet transform method. Then Gray level co-occurrence matrix features are extracted individually from the visible, thermal, and fused tongue images. The machine learning classifiers and deep learning networks such as VGG16 and ResNet50 was used to classify the normal and diabetes mellitus. Image quality metrics are implemented to compare the classifiers' performance before and after fusion. Support vector machine outperformed the machine learning classifiers, well after fusion with an accuracy of 88.12% compared to before the fusion process (Thermal-84.37%; Visible-63.1%). VGG16 produced the classification accuracy of 94.37% after fusion and attained 90.62% and 85% before fusion of individual thermal and visible tongue images, respectively. Therefore, this study results indicates that fused tongue images might be used as a non-contact elemental tool for pre-screening type II diabetes mellitus.


Asunto(s)
Diabetes Mellitus , Aprendizaje Automático , Lengua , Humanos , Lengua/diagnóstico por imagen , Lengua/patología , Masculino , Femenino , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Persona de Mediana Edad , Análisis de Ondículas , Máquina de Vectores de Soporte , Glucemia/análisis , Algoritmos
2.
Microsc Res Tech ; 87(8): 1789-1809, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38515433

RESUMEN

Skin cancer is a terrifying disorder that affects all individuals. Due to the significant increase in the rate of melanoma skin cancer, early detection of skin cancer is now more critical than ever before. Malignant melanoma is one of the most serious forms of skin cancer, and it is caused by abnormal melanocyte cell growth. In recent years, skin cancer predictive categorization has become more accurate and predictive due to multiple deep learning algorithms. Malignant melanoma is diagnosed using the Recurrent Convolution Neural Network-Long Short-Term Memory (RCNN-LSTM), which is one of the deep learning classification approaches. Using the International Skin Image Collection and the RCNN-LSTM, the data are categorized and analyzed to gain a better understanding of skin cancer. The method begins with data preprocessing, which prepares the dataset for classification. Additionally, the RCNN is employed to extract the features that are vital to the prediction process. The LSTM is accountable for the final step, classification. There are further factors to examine, such as the precision of 94.60%, the sensitivity of 95.67%, and the F1-score of 95.13%. Other benefits of the suggested study include shorter prediction durations of 95.314, 122.530, and 131.205 s and lower model loss of 0.25%, 0.19%, and 0.15% for input sizes 10, 15, and 20, respectively. Three datasets had a reduced categorization error of 5.11% and an accuracy of 95.42%. In comparison to previous approaches, the work discussed here produces superior outcomes. RESEARCH HIGHLIGHTS: Recurrent convolutional neural network (RCNN) deep learning approach for optimizing time prediction and error classification in early melanoma detection. It extracts a high number of specific features from the skin disease image, making the classification process easier and more accurate. To reduce classification errors in accurately detecting melanoma, context dependency is considered in this work. By accounting for context dependency, the deprivation state is avoided, preventing performance degradation in the model. To minimize melanoma detection model loss, a skin disease image augmentation or regularization process is performed in this work. This strategy improves the accuracy of the model when applied to fresh, previously unobserved data.


Asunto(s)
Aprendizaje Profundo , Detección Precoz del Cáncer , Melanoma , Redes Neurales de la Computación , Neoplasias Cutáneas , Melanoma/diagnóstico , Melanoma/clasificación , Humanos , Neoplasias Cutáneas/clasificación , Neoplasias Cutáneas/diagnóstico , Detección Precoz del Cáncer/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Melanoma Cutáneo Maligno , Piel/patología
3.
Bioengineering (Basel) ; 10(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38135961

RESUMEN

AI is a contemporary methodology rooted in the field of computer science [...].

4.
Explor Target Antitumor Ther ; 4(1): 1-16, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937315

RESUMEN

Aim: The process of biomarker discovery is being accelerated with the application of artificial intelligence (AI), including machine learning. Biomarkers of diseases are useful because they are indicators of pathogenesis or measures of responses to therapeutic treatments, and therefore, play a key role in new drug development. Proteins are among the candidates for biomarkers of rectal cancer, which need to be explored using state-of-the-art AI to be utilized for prediction, prognosis, and therapeutic treatment. This paper aims to investigate the predictive power of Ras homolog family member B (RhoB) protein in rectal cancer. Methods: This study introduces the integration of pretrained convolutional neural networks and support vector machines (SVMs) for classifying biopsy samples of immunohistochemical expression of protein RhoB in rectal-cancer patients to validate its biologic measure in biopsy. Features of the immunohistochemical expression images were extracted by the pretrained networks and used for binary classification by the SVMs into two groups of less and more than 5-year survival rates. Results: The fusion of neural search architecture network (NASNet)-Large for deep-layer feature extraction and classifier using SVMs provided the best average classification performance with a total accuracy = 85%, prediction of survival rate of more than 5 years = 90%, and prediction of survival rate of less than 5 years = 75%. Conclusions: The finding obtained from the use of AI reported in this study suggest that RhoB expression on rectal-cancer biopsy can be potentially used as a biomarker for predicting survival outcomes in rectal-cancer patients, which can be informative for clinical decision making if the patient would be recommended for preoperative therapy.

5.
Brain Sci ; 13(3)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36979210

RESUMEN

Intracranial hemorrhage (ICH) is a serious medical condition that necessitates a prompt and exhaustive medical diagnosis. This paper presents a multi-label ICH classification issue with six different types of hemorrhages, namely epidural (EPD), intraparenchymal (ITP), intraventricular (ITV), subarachnoid (SBC), subdural (SBD), and Some. A patient may experience numerous hemorrhages at the same time in some situations. A CT scan of a patient's skull is used to detect and classify the type of ICH hemorrhage(s) present. First, our model determines whether there is a hemorrhage or not; if there is a hemorrhage, the model attempts to identify the type of hemorrhage(s). In this paper, we present a hybrid deep learning approach that combines convolutional neural network (CNN) and Long-Short Term Memory (LSTM) approaches (Conv-LSTM). In addition, to propose viable solutions for the problem, we used a Systematic Windowing technique with a Conv-LSTM. To ensure the efficacy of the proposed model, experiments are conducted on the RSNA dataset. The suggested model provides higher sensitivity (93.87%), specificity (96.45%), precision (95.21%), and accuracy (95.14%). In addition, the obtained F1 score results outperform existing deep neural network-based algorithms.

6.
Diagnostics (Basel) ; 13(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36899965

RESUMEN

Today, medical images play a crucial role in obtaining relevant medical information for clinical purposes. However, the quality of medical images must be analyzed and improved. Various factors affect the quality of medical images at the time of medical image reconstruction. To obtain the most clinically relevant information, multi-modality-based image fusion is beneficial. Nevertheless, numerous multi-modality-based image fusion techniques are present in the literature. Each method has its assumptions, merits, and barriers. This paper critically analyses some sizable non-conventional work within multi-modality-based image fusion. Often, researchers seek help in apprehending multi-modality-based image fusion and choosing an appropriate multi-modality-based image fusion approach; this is unique to their cause. Hence, this paper briefly introduces multi-modality-based image fusion and non-conventional methods of multi-modality-based image fusion. This paper also signifies the merits and downsides of multi-modality-based image fusion.

7.
Diagnostics (Basel) ; 13(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36832156

RESUMEN

One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces difficulties, including low sensitivity, hazards during biopsy treatment, and a protracted waiting period for findings. In this context, developing non-invasive and computational methods for identifying and treating brain cancers is crucial. The classification of tumors obtained from an MRI is crucial for making a variety of medical diagnoses. However, MRI analysis typically requires much time. The primary challenge is that the tissues of the brain are comparable. Numerous scientists have created new techniques for identifying and categorizing cancers. However, due to their limitations, the majority of them eventually fail. In that context, this work presents a novel way of classifying multiple types of brain tumors. This work also introduces a segmentation algorithm known as Canny Mayfly. Enhanced chimpanzee optimization algorithm (EChOA) is used to select the features by minimizing the dimension of the retrieved features. ResNet-152 and the softmax classifier are then used to perform the feature classification process. Python is used to carry out the proposed method on the Figshare dataset. The accuracy, specificity, and sensitivity of the proposed cancer classification system are just a few of the characteristics that are used to evaluate its overall performance. According to the final evaluation results, our proposed strategy outperformed, with an accuracy of 98.85%.

8.
Am J Pathol ; 193(5): 579-590, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740183

RESUMEN

RhoB protein belongs to the Rho GTPase family, which plays an important role in governing cell signaling and tissue morphology. Its expression is known to have implications in pathologic processes of diseases. In particular, the role of RhoB in rectal cancer is not well understood. Investigation in the regulation and communication of this protein, detected by immunohistochemical staining on the microscope, can help gain insightful information leading to optimal disease treatment options. Herein, deep learning-based image analysis and the decomposition of multiway arrays were used to study the predictive factor of RhoB in two cohorts of patients with rectal cancer having survival rates of <5 and >5 years. The results show distinctions between the tensor decomposition factors of the two cohorts.


Asunto(s)
Neoplasias del Recto , Proteína de Unión al GTP rhoB , Humanos , Proteína de Unión al GTP rhoB/química , Proteína de Unión al GTP rhoB/metabolismo , Transducción de Señal , Biopsia
9.
Health Technol (Berl) ; 13(2): 215-228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818549

RESUMEN

Purpose: The paper is to study a review of the employment of deep learning (DL) techniques inside the healthcare sector, together with the highlight of the strength and shortcomings of existing methods together with several research ultimatums. Our study lays the foundation for healthcare professionals and government with present-day inclinations in DL-based data analytics for smart healthcare. Methods: A deep learning-based technique is designed to extract sensor displacement effects and predict abnormalities for activity recognition via Artificial Intelligence (AI). The presented technique minimizes the vanishing gradient issue of Recurrent Neural Networks (RNN), thereby reducing the time for detecting abnormalities with consideration of temporal and spatial factors. Proposed Moran Autocorrelation and Regression-based Elman Recurrent Neural Network (MAR-ERNN) introduced. Results: Experimental results show the feasibility of the proposed method. The results show that the proposed method improves accuracy by 95% and reduces execution time by 18%. Conclusion: MAR-ERNN performs well in the activity recognition of health status. Collectively, this IoT-enabled smart healthcare system is utilized by enhancing accuracy, and minimizing time and overhead reduction.

10.
Artículo en Inglés | MEDLINE | ID: mdl-36704244

RESUMEN

BACKGROUND: Over a decade, tissues dissected adjacent to primary tumors have been considered "normal" or healthy samples (NATs). However, NATs have recently been discovered to be distinct from both tumorous and normal tissues. The ability to predict the survival rate of cancer patients using NATs can open a new door to selecting optimal treatments for cancer and discovering biomarkers. METHODS: This paper introduces an artificial intelligence (AI) approach that uses NATs for predicting the 5-year survival of pre-operative radiotherapy patients with rectal cancer. The new approach combines pre-trained deep learning, nonlinear dynamics, and long short-term memory to classify immunohistochemical images of RhoB protein expression on NATs. RESULTS: Ten-fold cross-validation results show 88% accuracy of prediction obtained from the new approach, which is also higher than those provided from baseline methods. CONCLUSION: Preliminary results not only add objective evidence to recent findings of NATs' molecular characteristics using state-of-the-art AI methods, but also contribute to the discovery of RhoB expression on NATs in rectal-cancer patients. CLINICAL IMPACT: The ability to predict the survival rate of cancer patients is extremely important for clinical decision-making. The proposed AI tool is promising for assisting oncologists in their treatments of rectal cancer patients.


Asunto(s)
Inteligencia Artificial , Neoplasias del Recto , Humanos , Tasa de Supervivencia
11.
Neural Comput Appl ; 35(11): 8259-8279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36532883

RESUMEN

Pneumonia is an acute respiratory infection caused by bacteria, viruses, or fungi and has become very common in children ranging from 1 to 5 years of age. Common symptoms of pneumonia include difficulty breathing due to inflamed or pus and fluid-filled alveoli. The United Nations Children's Fund reports nearly 800,000 deaths in children due to pneumonia. Delayed diagnosis and overpriced tests are the prime reason for the high mortality rate, especially in underdeveloped countries. A time and cost-efficient diagnosis tool: Chest X-rays, was thus accepted as the standard diagnostic test for pediatric pneumonia. However, the lower radiation levels for diagnosis in children make the task much more onerous and time-consuming. The mentioned challenges initiate the need for a computer-aided detection model that is instantaneous and accurate. Our work proposes a stacked ensemble learning of deep learning-based features for pediatric pneumonia classification. The extracted features from the global average pooling layer of the fine-tuned Xception model pretrained on ImageNet weights are sent to the Kernel Principal Component Analysis for dimensionality reduction. The dimensionally reduced features are further trained and validated on the stacking classifier. The stacking classifier consists of two stages; the first stage uses the Random-Forest classifier, K-Nearest Neighbors, Logistic Regression, XGB classifier, Support Vector Classifier (SVC), Nu-SVC, and MLP classifier. The second stage operates on Logistic Regression using the first stage predictions for the final classification with Stratified K-fold cross-validation to prevent overfitting. The model was tested on the publicly available pediatric pneumonia dataset, achieving an accuracy of 98.3%, precision of 99.29%, recall of 98.36%, F1-score of 98.83%, and an AUC score of 98.24%. The performance shows its reliability for real-time deployment in assisting radiologists and physicians.

12.
Multimed Tools Appl ; 82(14): 21311-21351, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36281318

RESUMEN

Pediatric pneumonia has drawn immense awareness due to the high mortality rates over recent years. The acute respiratory infection caused by bacteria, viruses, or fungi infects the lung region and hinders oxygen transport, making breathing difficult due to inflamed or pus and fluid-filled alveoli. Being non-invasive and painless, chest X-rays are the most common modality for pediatric pneumonia diagnosis. However, the low radiation levels for diagnosis in children make accurate detection challenging. This challenge initiates the need for an unerring computer-aided diagnosis model. Our work proposes Contrast Limited Adaptive Histogram Equalization for image enhancement and a stacking classifier based on the fusion of deep learning-based features for pediatric pneumonia diagnosis. The extracted features from the global average pooling layers of the fine-tuned MobileNet, DenseNet121, DenseNet169, and DenseNet201 are concatenated for the final classification using a stacked ensemble classifier. The stacking classifier uses Support Vector Classifier, Nu-SVC, Logistic Regression, K-Nearest Neighbor, Random Forest Classifier, Gaussian Naïve Bayes, AdaBoost classifier, Bagging Classifier, and Extra-trees Classifier for the first stage, and Nu-SVC as the meta-classifier. The stacking classifier validated using Stratified K-Fold cross-validation achieves an accuracy of 98.62%, precision of 98.99%, recall of 99.53%, F1 score of 99.26%, and an AUC score of 93.17% on the publicly available pediatric pneumonia dataset. We expect this model to greatly help the real-time diagnosis of pediatric pneumonia.

13.
Cluster Comput ; 26(2): 1181-1203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35874187

RESUMEN

This paper proposes a multichannel deep learning approach for lung disease detection using chest X-rays. The multichannel models used in this work are EfficientNetB0, EfficientNetB1, and EfficientNetB2 pretrained models. The features from EfficientNet models are fused together. Next, the fused features are passed into more than one non-linear fully connected layer. Finally, the features passed into a stacked ensemble learning classifier for lung disease detection. The stacked ensemble learning classifier contains random forest and SVM in the first stage and logistic regression in the second stage for lung disease detection. The performance of the proposed method is studied in detail for more than one lung disease such as pneumonia, Tuberculosis (TB), and COVID-19. The performances of the proposed method for lung disease detection using chest X-rays compared with similar methods with the aim to show that the method is robust and has the capability to achieve better performances. In all the experiments on lung disease, the proposed method showed better performance and outperformed similar lung disease existing methods. This indicates that the proposed method is robust and generalizable on unseen chest X-rays data samples. To ensure that the features learnt by the proposed method is optimal, t-SNE feature visualization was shown on all three lung disease models. Overall, the proposed method has shown 98% detection accuracy for pediatric pneumonia lung disease, 99% detection accuracy for TB lung disease, and 98% detection accuracy for COVID-19 lung disease. The proposed method can be used as a tool for point-of-care diagnosis by healthcare radiologists.Journal instruction requires a city for affiliations; however, this is missing in affiliation 3. Please verify if the provided city is correct and amend if necessary.correct.

14.
Cancers (Basel) ; 14(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36497355

RESUMEN

Deep learning-based models have been employed for the detection and classification of skin diseases through medical imaging. However, deep learning-based models are not effective for rare skin disease detection and classification. This is mainly due to the reason that rare skin disease has very a smaller number of data samples. Thus, the dataset will be highly imbalanced, and due to the bias in learning, most of the models give better performances. The deep learning models are not effective in detecting the affected tiny portions of skin disease in the overall regions of the image. This paper presents an attention-cost-sensitive deep learning-based feature fusion ensemble meta-classifier approach for skin cancer detection and classification. Cost weights are included in the deep learning models to handle the data imbalance during training. To effectively learn the optimal features from the affected tiny portions of skin image samples, attention is integrated into the deep learning models. The features from the finetuned models are extracted and the dimensionality of the features was further reduced by using a kernel-based principal component (KPCA) analysis. The reduced features of the deep learning-based finetuned models are fused and passed into ensemble meta-classifiers for skin disease detection and classification. The ensemble meta-classifier is a two-stage model. The first stage performs the prediction of skin disease and the second stage performs the classification by considering the prediction of the first stage as features. Detailed analysis of the proposed approach is demonstrated for both skin disease detection and skin disease classification. The proposed approach demonstrated an accuracy of 99% on skin disease detection and 99% on skin disease classification. In all the experimental settings, the proposed approach outperformed the existing methods and demonstrated a performance improvement of 4% accuracy for skin disease detection and 9% accuracy for skin disease classification. The proposed approach can be used as a computer-aided diagnosis (CAD) tool for the early diagnosis of skin cancer detection and classification in healthcare and medical environments. The tool can accurately detect skin diseases and classify the skin disease into their skin disease family.

15.
Health Technol (Berl) ; 12(6): 1211-1235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406184

RESUMEN

Purpose: This study proposes to identify potential liver patients based on the results of a liver function test performed during a health screening to search for signs of liver disease. It is critical to detect a liver patient at an early stage in order to treat them effectively. A liver function test's level of specific enzymes and proteins in the blood is evaluated to determine if a patient has liver disease. Methods: According to a review of the literature, general practitioners (GPs) rarely investigate any anomalies in liver function tests to the level indicated by national standards. The authors have used data pre-processing in this work. The collection has 30691 records with 11 attributes. The classification model is utilized to construct an effective prediction system to aid general practitioners in identifying a liver patient using data mining. Results: The collected results indicate that both the Naïve Bayes and C4.5 Decision Tree models give accurate predictions. However, given the C4.5 model offers more accurate predictions than the Naïve Bayes model, it can be assumed that the C4.5 model is superior for this research. Consequently, the liver patient prediction system will be developed using the rules given by the C4.5 Decision Tree model in order to predict the patient class. The training set, suggested data mining with a classification model achieved 99.36% accuracy and on the testing set, 98.40% accuracy. On the training set, the enhanced accuracy relative to the current system was 29.5, while on the test set, it was 28.73. In compared to state-of-the-art models, the proposed approach yields satisfactory outcomes. Conclusion: The proposed technique offers a variety of data visualization and user interface options, and this type of platform can be used as an early diagnosis tool for liver-related disorders in the healthcare sector. This study suggests a machine learning-based technique for predicting liver disease. The framework includes a user interface via which healthcare providers can enter patient information.

16.
Diagnostics (Basel) ; 12(11)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36428826

RESUMEN

In the COVID-19 era, it may be possible to detect COVID-19 by detecting lesions in scans, i.e., ground-glass opacity, consolidation, nodules, reticulation, or thickened interlobular septa, and lesion distribution, but it becomes difficult at the early stages due to embryonic lesion growth and the restricted use of high dose X-ray detection. Therefore, it may be possible for a patient who may or may not be infected with coronavirus to consider using high-dose X-rays, but it may cause more risks. Conclusively, using low-dose X-rays to produce CT scans and then adding a rigorous denoising algorithm to the scans is the best way to protect patients from side effects or a high dose X-ray when diagnosing coronavirus involvement early. Hence, this paper proposed a denoising scheme using an NLM filter and method noise thresholding concept in the shearlet domain for noisy COVID CT images. Low-dose COVID CT images can be further utilized. The results and comparative analysis showed that, in most cases, the proposed method gives better outcomes than existing ones.

17.
Health Technol (Berl) ; 12(6): 1237-1258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246540

RESUMEN

Purpose: Research into predictive analytics, which helps predict future values using historical data, is crucial. In order to foresee future instances of COVID-19, a method based on the Seasonal ARIMA (SARIMA) model is proposed here. Additionally, the suggested model is able to predict tourist arrivals in the tourism business by factoring in COVID-19 during the pandemic. In this paper, we present a model that uses time-series analysis to predict the impact of a pandemic event, in this case the spread of the Coronavirus pandemic (Covid-19). Methods: The proposed approach outperformed the Autoregressive Integrated Moving Average (ARIMA) and Holt Winters models in all experiments for forecasting future values using COVID-19 and tourism datasets, with the lowest mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), and root mean squared error (RMSE). The SARIMA model predicts COVID-19 and tourist arrivals with and without the COVID-19 pandemic with less than 5% MAPE error. Results: The suggested method provides a dashboard that shows COVID-19 and tourism-related information to end users. The suggested tool can be deployed in the healthcare, tourism, and government sectors to monitor the number of COVID-19 cases and determine the correlation between COVID-19 cases and tourism. Conclusion: Management in the tourism industries and stakeholders are expected to benefit from this study in making decisions about whether or not to keep funding a given tourism business. The datasets, codes, and all the experiments are available for further research, and details are included in the appendix.

18.
Health Technol (Berl) ; 12(5): 1009-1024, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966170

RESUMEN

Diagnosing COVID-19, current pandemic disease using Chest X-ray images is widely used to evaluate the lung disorders. As the spread of the disease is enormous many medical camps are being conducted to screen the patients and Chest X-ray is a simple imaging modality to detect presence of lung disorders. Manual lung disorder detection using Chest X-ray by radiologist is a tedious process and may lead to inter and intra-rate errors. Various deep convolution neural network techniques were tested for detecting COVID-19 abnormalities in lungs using Chest X-ray images. This paper proposes deep learning model to classify COVID-19 and normal chest X-ray images. Experiments are carried out for deep feature extraction, fine-tuning of convolutional neural networks (CNN) hyper parameters, and end-to-end training of four variants of the CNN model. The proposed CovMnet provide better classification accuracy of 97.4% for COVID-19 /normal than those reported in the previous studies. The proposed CovMnet model has potential to aid radiologist to monitor COVID-19 disease and proves to be an efficient non-invasive COVID-19 diagnostic tool for lung disorders.

19.
Health Technol (Berl) ; 12(4): 825-838, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669293

RESUMEN

The Severe Acute Respiratory Syndrome (SARS)-CoV-2 virus caused COVID-19 pandemic has led to various kinds of anxiety and stress in different strata and sections of the society. The aim of this study is to analyse the sleeping and anxiety disorder for a wide distribution of people of different ages and from different strata of life. The study also seeks to investigate the different symptoms and grievances that people suffer from in connection with their sleep patterns and predict the possible relationships and factors in association with outcomes related to COVID-19 pandemic induced stress and issues. A total of 740 participants (51.3% male and 48.7% female) structured with 2 sections, first with general demographic information and second with more targeted questions for each demographic were surveyed. Pittsburgh Sleep Quality Index (PSQI) and General Anxiety Disorder assessment (GAD-7) standard scales were utilized to measure the stress, sleep disorders and anxiety. Experimental results showed positive correlation between PSQI and GAD-7 scores for the participants. After adjusting for age and gender, occupation does not have an effect on sleep quality (PSQI), but it does have an effect on anxiety (GAD-7). Student community in spite of less susceptible to COVID-19 infection found to be highly prone to psychopathy mental health disturbances during the COVID-19 pandemic. The study also highlights the connectivity between lower social status and mental health issues. Random Forest model for college students indicates clearly the stress induced factors as anxiety score, worry about inability to understand concepts taught online, involvement of parents, college hours, worrying about other work load and deadlines for the young students studying in Universities.

20.
Multimed Tools Appl ; 81(28): 40451-40468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572385

RESUMEN

The decision-making process is very crucial in healthcare, which includes quick diagnostic methods to monitor and prevent the COVID-19 pandemic disease from spreading. Computed tomography (CT) is a diagnostic tool used by radiologists to treat COVID patients. COVID x-ray images have inherent texture variations and similarity to other diseases like pneumonia. Manually diagnosing COVID X-ray images is a tedious and challenging process. Extracting the discriminant features and fine-tuning the classifiers using low-resolution images with a limited COVID x-ray dataset is a major challenge in computer aided diagnosis. The present work addresses this issue by proposing and implementing Histogram Oriented Gradient (HOG) features trained with an optimized Random Forest (RF) classifier. The proposed HOG feature extraction method is evaluated with Gray-Level Co-Occurrence Matrix (GLCM) and Hu moments. Results confirm that HOG is found to reflect the local description of edges effectively and provide excellent structural features to discriminate COVID and non-COVID when compared to the other feature extraction techniques. The performance of the RF is compared with other classifiers such as Linear Regression (LR), Linear Discriminant Analysis (LDA), K-nearest neighbor (kNN), Classification and Regression Trees (CART), Random Forest (RF), Support Vector Machine (SVM), and Multi-layer perceptron neural network (MLP). Experimental results show that the highest classification accuracy (99. 73%) is achieved using HOG trained by using the Random Forest (RF) classifier. The proposed work has provided promising results to assist radiologists/physicians in automatic COVID diagnosis using X-ray images.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...