Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 285(18): 3353-3361, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29890022

RESUMEN

Maintaining protein homeostasis (proteostasis) is essential for a functional proteome. A wide range of extrinsic and intrinsic factors perturb proteostasis, causing protein misfolding, misassembly, and aggregation. This compromises cellular integrity and leads to aging and disease, including neurodegeneration and cancer. At the cellular level, protein aggregation is counteracted by powerful mechanisms comprising of a cascade of enzymes and chaperones that operate in a coordinated multistep manner to sense, prevent, and/or dispose of aberrant proteins. Although these processes are well understood for soluble proteins, there is a major gap in our understanding of how cells handle misfolded or aggregated membrane proteins. This article provides an overview of cellular proteostasis with emphasis on membrane protein substrates and suggests host-virus interaction as a tool to clarify outstanding questions in proteostasis.


Asunto(s)
Interacciones Huésped-Patógeno , Chaperonas Moleculares , Agregación Patológica de Proteínas , Proteoma/metabolismo , Deficiencias en la Proteostasis/fisiopatología , Proteostasis , Animales , Humanos
2.
J Virol ; 92(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29593037

RESUMEN

During entry, polyomavirus (PyV) is endocytosed and sorts to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol. From the cytosol, the virus moves to the nucleus to cause infection. How PyV is transported from the cytosol into the nucleus, a crucial infection step, is unclear. We found that upon reaching the cytosol, the archetypal PyV simian virus 40 (SV40) recruits the cytoplasmic dynein motor, which disassembles the viral particle. This reaction enables the resulting disassembled virus to enter the nucleus to promote infection. Our findings reveal how a cytosolic motor can be hijacked to impart conformational changes to a viral particle, a process essential for successful infection.IMPORTANCE How a nonenveloped virus successfully traffics from the cell surface to the nucleus to cause infection remains enigmatic in many instances. In the case of the nonenveloped PyV, the viral particle is sorted from the plasma membrane to the ER and then the cytosol, from which it enters the nucleus to promote infection. The molecular mechanism by which PyV reaches the nucleus from the cytosol is not entirely clear. Here we demonstrate that the prototype PyV SV40 recruits dynein upon reaching the cytosol. Importantly, this cellular motor disassembles the viral particle during cytosol-to-nucleus transport to cause infection.


Asunto(s)
Citosol/virología , Dineínas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Virus 40 de los Simios/patogenicidad , Animales , Células COS , Línea Celular , Núcleo Celular/virología , Chlorocebus aethiops , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/virología , Virus 40 de los Simios/química , Virus 40 de los Simios/fisiología , Internalización del Virus
3.
Nat Commun ; 8: 15496, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28537258

RESUMEN

Viruses exploit cellular machineries to penetrate a host membrane and cause infection, a process that remains enigmatic for non-enveloped viruses. Here we probe how the non-enveloped polyomavirus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a crucial infection step. We find that the microtubule-based motor kinesin-1 is recruited to the ER membrane by binding to the transmembrane J-protein B14. Strikingly, this motor facilitates SV40 ER-to-cytosol transport by constructing a penetration site on the ER membrane called a 'focus'. Neither kinesin-2, kinesin-3 nor kinesin-5 promotes foci formation or infection. The specific use of kinesin-1 is due to its unique ability to select posttranslationally modified microtubules for cargo transport and thereby spatially restrict focus formation to the perinucleus. These findings support the idea of a 'tubulin code' for motor-dependent trafficking and establish a distinct kinesin-1 function in which a motor is exploited to create a viral membrane penetration site.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Cinesinas/metabolismo , Virus 40 de los Simios/fisiología , Internalización del Virus , Animales , Células COS , Chlorocebus aethiops , Citosol/metabolismo , Citosol/virología , Retículo Endoplásmico/virología , Técnicas de Silenciamiento del Gen , Células HEK293 , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Humanos , Membranas Intracelulares/virología , Microscopía Intravital , Cinesinas/genética , Microtúbulos/metabolismo , Chaperonas Moleculares , ARN Interferente Pequeño/metabolismo , Virus 40 de los Simios/patogenicidad , Virión/metabolismo
4.
Methods Mol Biol ; 1491: 75-85, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27778282

RESUMEN

This chapter provides a step-by-step protocol using activity-based protein profiling (ABPP) as a chemical-proteomic tool to survey the antibiotic properties of a small molecule. Here, we investigate the molecular mechanism behind the bactericidal activity of tetrahydrolipstatin (THL). ABPP relies on small molecule probes that target the active site of specific enzymes in complex proteomes. These probes in turn are equipped with a reporter tag that allows capturing, visualization, enrichment, identification, and quantification of its targets either in vitro or in situ. THL possesses bactericidal activities, but its precise spectrum of molecular targets is poorly characterized. Here, we used THL analogs functionalized to enable Huisgen-base cycloaddition, commonly known as "click chemistry," to identify target proteins after enrichment from mycobacterial cell lysates obtained from different physiological conditions.


Asunto(s)
Esterasas/metabolismo , Lactonas/farmacología , Metabolismo de los Lípidos , Mycobacterium bovis/enzimología , Proteómica , Antibacterianos/farmacología , Química Clic , Reacción de Cicloadición , Inhibidores Enzimáticos/farmacología , Orlistat
5.
PLoS Pathog ; 12(6): e1005712, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27281031

RESUMEN

[This corrects the article DOI: 10.1371/journal.ppat.1005467.].

6.
Nat Rev Microbiol ; 14(7): 407-420, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27265768

RESUMEN

Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co-opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus-ER interactions has become available, these insights may lead to the development of crucial therapeutic agents.


Asunto(s)
Retículo Endoplásmico/fisiología , Retículo Endoplásmico/virología , Interacciones Huésped-Patógeno , Virosis/virología , Virus/metabolismo , Animales , Replicación del ADN , Genoma Viral , Humanos , Ensamble de Virus , Virosis/terapia , Internalización del Virus , Replicación Viral/genética , Virus/genética
8.
Crit Rev Biochem Mol Biol ; 50(6): 477-88, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26362261

RESUMEN

A dedicated network of cellular factors ensures that proteins translocated into the endoplasmic reticulum (ER) are folded correctly before they exit this compartment en route to other cellular destinations or for secretion. When proteins misfold, selective ER-resident enzymes and chaperones are recruited to rectify the protein-misfolding problem in order to maintain cellular proteostasis. However, when a protein becomes terminally misfolded, it is ejected into the cytosol and degraded by the proteasome via a pathway called ER-associated degradation (ERAD). Strikingly, toxins and viruses can hijack elements of the ERAD pathway to access the host cytosol and cause infection. This review focuses on emerging data illuminating the molecular mechanisms by which these toxic agents co-opt the ER-to-cytosol translocation process to cause disease.


Asunto(s)
Infecciones Bacterianas/metabolismo , Fenómenos Fisiológicos Bacterianos , Toxinas Bacterianas/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Interacciones Huésped-Patógeno , Infecciones por Polyomavirus/metabolismo , Poliomavirus/fisiología , Animales , Citosol/metabolismo , Citosol/microbiología , Citosol/virología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/microbiología , Retículo Endoplásmico/virología , Humanos , Transporte de Proteínas
9.
PLoS Pathog ; 11(8): e1005086, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26244546

RESUMEN

Mammalian cytosolic Hsp110 family, in concert with the Hsc70:J-protein complex, functions as a disaggregation machinery to rectify protein misfolding problems. Here we uncover a novel role of this machinery in driving membrane translocation during viral entry. The non-enveloped virus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a critical infection step. Combining biochemical, cell-based, and imaging approaches, we find that the Hsp110 family member Hsp105 associates with the ER membrane J-protein B14. Here Hsp105 cooperates with Hsc70 and extracts the membrane-penetrating SV40 into the cytosol, potentially by disassembling the membrane-embedded virus. Hence the energy provided by the Hsc70-dependent Hsp105 disaggregation machinery can be harnessed to catalyze a membrane translocation event.


Asunto(s)
Retículo Endoplásmico/virología , Interacciones Huésped-Parásitos/fisiología , Infecciones por Polyomavirus/metabolismo , Virus 40 de los Simios/patogenicidad , Infecciones Tumorales por Virus/metabolismo , Transporte Biológico/fisiología , Línea Celular , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSP110/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Microscopía Fluorescente , Transducción de Señal/fisiología , Transfección
10.
J Virol ; 89(17): 8897-908, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26085143

RESUMEN

UNLABELLED: The nonenveloped polyomavirus (PyV) simian virus 40 (SV40) traffics from the cell surface to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol before mobilizing into the nucleus to cause infection. Prior to ER membrane penetration, ER lumenal factors impart structural rearrangements to the virus, generating a translocation-competent virion capable of crossing the ER membrane. Here we identify ERdj5 as an ER enzyme that reduces SV40's disulfide bonds, a reaction important for its ER membrane transport and infection. ERdj5 also mediates human BK PyV infection. This enzyme cooperates with protein disulfide isomerase (PDI), a redox chaperone previously implicated in the unfolding of SV40, to fully stimulate membrane penetration. Negative-stain electron microscopy of ER-localized SV40 suggests that ERdj5 and PDI impart structural rearrangements to the virus. These conformational changes enable SV40 to engage BAP31, an ER membrane protein essential for supporting membrane penetration of the virus. Uncoupling of SV40 from BAP31 traps the virus in ER subdomains called foci, which likely serve as depots from where SV40 gains access to the cytosol. Our study thus pinpoints two ER lumenal factors that coordinately prime SV40 for ER membrane translocation and establishes a functional connection between lumenal and membrane events driving this process. IMPORTANCE: PyVs are established etiologic agents of many debilitating human diseases, especially in immunocompromised individuals. To infect cells at the cellular level, this virus family must penetrate the host ER membrane to reach the cytosol, a critical entry step. In this report, we identify two ER lumenal factors that prepare the virus for ER membrane translocation and connect these lumenal events with events on the ER membrane. Pinpointing cellular components necessary for supporting PyV infection should lead to rational therapeutic strategies for preventing and treating PyV-related diseases.


Asunto(s)
Retículo Endoplásmico/enzimología , Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Virus 40 de los Simios/patogenicidad , Animales , Virus BK/patogenicidad , Transporte Biológico , Línea Celular , Chlorocebus aethiops , Disulfuros/metabolismo , Proteínas del Choque Térmico HSP40/genética , Humanos , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Oxidación-Reducción , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/patología , Infecciones por Polyomavirus/virología , Proteína Disulfuro Isomerasas/genética , Interferencia de ARN , ARN Interferente Pequeño , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/patología , Infecciones Tumorales por Virus/virología , Internalización del Virus
11.
PLoS Pathog ; 10(3): e1004007, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24675744

RESUMEN

Nonenveloped viruses undergo conformational changes that enable them to bind to, disrupt, and penetrate a biological membrane leading to successful infection. We assessed whether cytosolic factors play any role in the endoplasmic reticulum (ER) membrane penetration of the nonenveloped SV40. We find the cytosolic SGTA-Hsc70 complex interacts with the ER transmembrane J-proteins DnaJB14 (B14) and DnaJB12 (B12), two cellular factors previously implicated in SV40 infection. SGTA binds directly to SV40 and completes ER membrane penetration. During ER-to-cytosol transport of SV40, SGTA disengages from B14 and B12. Concomitant with this, SV40 triggers B14 and B12 to reorganize into discrete foci within the ER membrane. B14 must retain its ability to form foci and interact with SGTA-Hsc70 to promote SV40 infection. Our results identify a novel role for a cytosolic chaperone in the membrane penetration of a nonenveloped virus and raise the possibility that the SV40-induced foci represent cytosol entry sites.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Infecciones por Polyomavirus/metabolismo , Virus 40 de los Simios/fisiología , Animales , Línea Celular , Cromatografía en Gel , Humanos , Inmunoprecipitación , Membranas Intracelulares/metabolismo , Microscopía Fluorescente , ARN Interferente Pequeño , Transfección
12.
Mol Cell Proteomics ; 13(2): 435-48, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24345785

RESUMEN

Tetrahydrolipstatin (THL) is bactericidal but its precise target spectrum is poorly characterized. Here, we used a THL analog and activity-based protein profiling to identify target proteins after enrichment from whole cell lysates of Mycobacterium bovis Bacillus Calmette-Guérin cultured under replicating and non-replicating conditions. THL targets α/ß-hydrolases, including many lipid esterases (LipD, G, H, I, M, N, O, V, W, and TesA). Target protein concentrations and total esterase activity correlated inversely with cellular triacylglycerol upon entry into and exit from non-replicating conditions. Cellular overexpression of lipH and tesA led to decreased THL susceptibility thus providing functional validation. Our results define the target spectrum of THL in a biological species with particularly diverse lipid metabolic pathways. We furthermore derive a conceptual approach that demonstrates the use of such THL probes for the characterization of substrate recognition by lipases and related enzymes.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Esterasas/antagonistas & inhibidores , Lactonas/farmacología , Mycobacterium bovis/efectos de los fármacos , Mycobacterium bovis/enzimología , Mycobacterium bovis/crecimiento & desarrollo , Técnicas Bacteriológicas , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana/genética , Activación Enzimática/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Lipasa/antagonistas & inhibidores , Lipasa/genética , Lipasa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Terapia Molecular Dirigida , Mycobacterium bovis/metabolismo , Orlistat , Triglicéridos/metabolismo
13.
Traffic ; 14(11): 1182-91, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23944656

RESUMEN

Gangliosides, glycosphingolipids containing sialic acid moieties, are well known mediators of transmembrane signaling and endocytosis at the plasma membrane. However, little is known about their precise regulatory role at the cell periphery for intracellular sorting of extracellular cargo. Here we inspected published scientific literature for two types of cargoes, namely bacterial toxins and viruses, regarding their usage of gangliosides. We derived a rather simple yet surprisingly consistent framework to classify 20 viruses from 12 different families and five type AB bacterial toxins into two broad categories. We propose that gangliosides with terminally attached sialic acids classify cargo for uptake and trafficking early in the endocytic pathway while gangliosides with internally attached sialic acids associate with uptake and trafficking of cargo late in the endocytic system. Our study provides a testable hypothesis for future investigations into a wide range of trafficking events. It could be utilized as a framework for other intracellular pathogens where lipids are known to be involved in recognition and trafficking. For instance, predictions can be put forward and evaluated based on ganglioside binding patterns and intracellular trafficking routes. Finally, incorporation of our classifier into large scale systems-biology studies could help reveal related molecular determinants in subcellular sorting.


Asunto(s)
Endocitosis , Glicoesfingolípidos/metabolismo , Ácido N-Acetilneuramínico/química , Animales , Toxinas Bacterianas/clasificación , Toxinas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/virología , Endosomas/metabolismo , Endosomas/virología , Glicoesfingolípidos/química , Glicoesfingolípidos/clasificación , Interacciones Huésped-Patógeno , Humanos , Ácido N-Acetilneuramínico/metabolismo , Transporte de Proteínas , Virus/clasificación , Virus/metabolismo
14.
J Biol Chem ; 287(36): 30677-87, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22798073

RESUMEN

Glycopeptidolipids (GPLs) are dominant cell surface molecules present in several non-tuberculous and opportunistic mycobacterial species. GPLs from Mycobacterium smegmatis are composed of a lipopeptide core unit consisting of a modified C(26)-C(34) fatty acyl chain that is linked to a tetrapeptide (Phe-Thr-Ala-alaninol). The hydroxyl groups of threonine and terminal alaninol are further modified by glycosylations. Although chemical structures have been reported for 16 GPLs from diverse mycobacteria, there is still ambiguity in identifying the exact position of the hydroxyl group on the fatty acyl chain. Moreover, the enzymes involved in the biosynthesis of the fatty acyl component are unknown. In this study we show that a bimodular polyketide synthase in conjunction with a fatty acyl-AMP ligase dictates the synthesis of fatty acyl chain of GPL. Based on genetic, biochemical, and structural investigations, we determine that the hydroxyl group is present at the C-5 position of the fatty acyl component. Our retrobiosynthetic approach has provided a means to understand the biosynthesis of GPLs and also resolve the long-standing debate on the accurate structure of mycobacterial GPLs.


Asunto(s)
Ácidos Grasos/metabolismo , Glucolípidos/biosíntesis , Mycobacterium smegmatis/metabolismo , Oligopéptidos/biosíntesis , Glicosilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...