Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 8(14): 3731-3744, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38815238

RESUMEN

ABSTRACT: Epstein-Barr virus (EBV) is a potent carcinogen linked to hematologic and solid malignancies and causes significant global morbidity and mortality. Therapy using allogeneic EBV-specific lymphocytes shows promise in certain populations, but the impact of EBV genome variation on these strategies remains unexplored. To address this, we sequenced 217 EBV genomes, including hematologic malignancies from Guatemala, Peru, Malawi, and Taiwan, and analyzed them alongside 1307 publicly available EBV genomes from cancer, nonmalignant diseases, and healthy individuals across Africa, Asia, Europe, North America, and South America. These included, to our knowledge, the first natural killer (NK)/T-cell lymphoma (NKTCL) EBV genomes reported outside of East Asia. Our findings indicate that previously proposed EBV genome variants specific to certain cancer types are more closely tied to geographic origin than to cancer histology. This included variants previously reported to be specific to NKTCL but were prevalent in EBV genomes from other cancer types and healthy individuals in East Asia. After controlling for geographic region, we did identify multiple NKTCL-specific variants associated with a 7.8-fold to 21.9-fold increased risk. We also observed frequent variations in EBV genomes that affected peptide sequences previously reported to bind common major histocompatibility complex alleles. Finally, we found several nonsynonymous variants spanning the coding sequences of current vaccine targets BALF4, BKRF2, BLLF1, BXLF2, BZLF1, and BZLF2. These results highlight the need to consider geographic variation in EBV genomes when devising strategies for exploiting adaptive immune responses against EBV-related cancers, ensuring greater global effectiveness and equity in prevention and treatment.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/inmunología , Variación Genética , Genoma Viral , Inmunoterapia
2.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370623

RESUMEN

Inadequate T-cell control of Kaposi sarcoma-associated herpesvirus (KSHV) infection predisposes to development of Kaposi sarcoma (KS), but little is known about the T-cell response to KSHV. Postulating that KS tumors contain abundant KSHV-specific T-cells, we performed transcriptional profiling and T-cell receptor (TCR) repertoire analysis of tumor biopsies from 144 Ugandan adults with KS. We show that CD8+ T-cells and M2-polarized macrophages dominate the tumor micro-environment (TME). The TCR repertoire of KS tumor infiltrating lymphocytes (TIL) is shared across non-contiguous tumors and persists across time. Clusters of T-cells with predicted shared specificity for uncharacterized antigens, potentially encoded by KSHV, comprise ~25% of KS TIL, and are shared across tumors from different time points and individuals. Single-cell RNA-sequencing of blood identifies a non-proliferating effector memory phenotype and captured the TCRs in 14,698 putative KSHV-specific T-cells. These results suggest that a polyspecific KSHV-specific T-cell response inhibited by M2 macrophages exists within the KS TME, and provide a foundation for studies to define its specificity at a large scale.

3.
Sci Rep ; 14(1): 345, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172168

RESUMEN

Immune checkpoint inhibitors (ICI) are important treatment options for metastatic non-small cell lung cancer (mNSCLC). However, not all patients benefit from ICIs and can experience immune-related adverse events (irAEs). Limited understanding exists for germline determinants of ICI efficacy and toxicity, but Human Leukocyte Antigen (HLA) genes have emerged as a potential predictive biomarker. We performed HLA typing on 85 patients with mNSCLC, on ICI therapy and analyzed the impact of HLA Class II genotype on progression free survival (PFS), overall survival (OS), and irAEs. Most patients received pembrolizumab (83.5%). HLA-DRB4 genotype was seen in 34/85 (40%) and its presence correlated with improved OS in both univariate (p = 0.022; 26.3 months vs 10.2 months) and multivariate analysis (p = 0.011, HR 0.49, 95% CI [0.29, 0.85]). PFS did not reach significance (univariate, p = 0.12, 8.2 months vs 5.1 months). Eleven patients developed endocrine irAEs. HLA-DRB4 was the predominant genotype among these patients (9/11, 81.8%). Cumulative incidence of endocrine irAEs was higher in patients with HLA-DRB4 (p = 0.0139). Our study is the first to suggest that patients with metastatic NSCLC patients on ICI therapy with HLA-DRB4 genotype experience improved survival outcomes. Patients with HLA-DRB4 had the longest median OS (26.3 months). Additionally, we found a correlation between HLA-DRB4 and the occurrence of endocrine irAEs.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Cadenas HLA-DRB4 , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Nivolumab/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Estudios Retrospectivos , Biomarcadores , Inmunoterapia/efectos adversos , Antígenos HLA
4.
Sci Rep ; 12(1): 19802, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396703

RESUMEN

Naturally occurring human infections by zoonotic Plasmodium species have been documented for P. knowlesi, P. cynomolgi, P. simium, P. simiovale, P. inui, P. inui-like, P. coatneyi, and P. brasilianum. Accurate detection of each species is complicated by their morphological similarities with other Plasmodium species. PCR-based assays offer a solution but require prior knowledge of adequate genomic targets that can distinguish the species. While whole genomes have been published for P. knowlesi, P. cynomolgi, P. simium, and P. inui, no complete genome for P. brasilianum has been available. Previously, we reported a draft genome for P. brasilianum, and here we report the completed genome for P. brasilianum. The genome is 31.4 Mb in size and comprises 14 chromosomes, the mitochondrial genome, the apicoplast genome, and 29 unplaced contigs. The chromosomes consist of 98.4% nucleotide sites that are identical to the P. malariae genome, the closest evolutionarily related species hypothesized to be the same species as P. brasilianum, with 41,125 non-synonymous SNPs (0.0722% of genome) identified between the two genomes. Furthermore, P. brasilianum had 4864 (82.1%) genes that share 80% or higher sequence similarity with 4970 (75.5%) P. malariae genes. This was demonstrated by the nearly identical genomic organization and multiple sequence alignments for the merozoite surface proteins msp3 and msp7. We observed a distinction in the repeat lengths of the circumsporozoite protein (CSP) gene sequences between P. brasilianum and P. malariae. Our results demonstrate a 97.3% pairwise identity between the P. brasilianum and the P. malariae genomes. These findings highlight the phylogenetic proximity of these two species, suggesting that P. malariae and P. brasilianum are strains of the same species, but this could not be fully evaluated with only a single genomic sequence for each species.


Asunto(s)
Malaria , Parásitos , Plasmodium , Animales , Humanos , Parásitos/genética , Filogenia , Plasmodium/genética , Malaria/parasitología , Análisis de Secuencia de ADN
5.
Front Immunol ; 13: 879190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35585986

RESUMEN

Long-term antiretroviral therapy (ART) in people living with HIV (PLHIV) is associated with sustained increases in CD4+ T-cell count, but its effect on the peripheral blood T-cell repertoire has not been comprehensively evaluated. In this study, we performed serial profiling of the composition and diversity of the T-cell receptor ß-chain (TRB) repertoire in 30 adults with HIV infection before and after the initiation of ART to define its long-term impact on the TRB repertoire. Serially acquired blood samples from 30 adults with HIV infection collected over a mean of 6 years (range, 1-12) years, with 1-4 samples collected before and 2-8 samples collected after the initiation of ART, were available for analysis. TRB repertoires were characterized via high-throughput sequencing of the TRB variable region performed on genomic DNA extracted from unsorted peripheral blood mononuclear cells. Additional laboratory and clinical metadata including serial measurements of HIV viral load and CD4 + T-cell count were available for all individuals in the cohort. A previously published control group of 189 TRB repertoires from peripheral blood samples of adult bone marrow transplant donors was evaluated for comparison. ART initiation in PLHIV was associated with a sustained reduction in viral load and a significant increase in TRB repertoire diversity. However, repertoire diversity in PLHIV remained significantly lower than in the control group even after long-term ART. The composition of TRB repertoires of PLHIV after ART also remained perturbed compared to the control cohort, as evidenced by large persistent private clonal expansions, reduced efficiency in the generation of TRB CDR3 amino acid sequences, and a narrower range of CDR3 lengths. Network analysis revealed an antigen-experienced structure in the TRB repertoire of PLHIV both before and after ART initiation that was quite distinct from the structure of control repertoires, with a slight shift toward a more naïve structure observed after ART initiation. Though we observe significant improvement in TRB repertoire diversity with durable viral suppression in PLHIV on long-term ART, the composition and structure of these repertoires remain significantly perturbed compared to the control cohort of adult bone marrow transplant donors.


Asunto(s)
Infecciones por VIH , Receptores de Antígenos de Linfocitos T alfa-beta , Adulto , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucocitos Mononucleares , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Carga Viral
6.
DNA Repair (Amst) ; 103: 103137, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34083132

RESUMEN

Recent studies have suggested that human RNA helicase, DDX3X, is important for DNA repair, but little is known about the nuclear activity of this protein. In vitro analysis of nuclear DDX3X interactions and localization with DNA damage pointed to a direct role for DDX3X in the DNA damage response. We aimed to investigate whether DDX3X plays a direct role in the DNA damage response in live cells. In order to track nuclear DDX3X, we generated a nuclear-export deficient DDX3X mutant construct and performed microirradiation in live cells. We found that DDX3X accumulates at sites of microirradiation shortly after DNA damage induction. We further found DDX3X recruitment to be mediated by its intrinsically disordered domains, similar to other RNA binding proteins that are recruited to sites of DNA damage. Inhibition of liquid-liquid phase separation also reduced DDX3X recruitment. CRISPR/Cas9-mediated knockout of PARP1 ablated DDX3X recruitment, which was restored upon transgenic expression of wild-type PARP1 but not catalytically inactive PARP1, suggesting that DDX3X recruitment is PARP1-dependent.


Asunto(s)
Núcleo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , Daño del ADN , Reparación del ADN , Poli(ADP-Ribosa) Polimerasa-1 , Línea Celular , ADN/metabolismo , ADN/efectos de la radiación , Células HEK293 , Humanos
7.
Int J Infect Dis ; 107: 234-241, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33940188

RESUMEN

BACKGROUND: Recent studies showed the first emergence of the R561H artemisinin-associated resistance marker in Africa, which highlights the importance of continued molecular surveillance to assess the selection and spread of this and other drug resistance markers in the region. METHOD: In this study, we used targeted amplicon deep sequencing of 116 isolates collected in two areas of Cameroon to genotype the major drug resistance genes, k13, crt, mdr1, dhfr, and dhps, and the cytochrome b gene (cytb) in Plasmodium falciparum. RESULTS: No confirmed or associated artemisinin resistance markers were observed in Pfk13. In comparison, both major and minor alleles associated with drug resistance were found in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps. Notably, a high frequency of other nonsynonymous mutations was observed across all the genes, except for Pfcytb, suggesting continued selection pressure. CONCLUSIONS: The results from this study supported the continued use of artemisinin-based combination therapy and administration of sulfadoxine-pyrimethamine for intermittent preventive therapy in pregnant women, and for seasonal chemoprevention in these study sites in Cameroon.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Marcadores Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Alelos , Camerún , Femenino , Genotipo , Humanos , Mutación , Plasmodium falciparum/aislamiento & purificación , Embarazo
8.
Artículo en Inglés | MEDLINE | ID: mdl-31085516

RESUMEN

Mutations in the Plasmodium falciparumk13 (Pfk13) gene are linked to delayed parasite clearance in response to artemisinin-based combination therapies (ACTs) in Southeast Asia. To explore the evolutionary rate and constraints acting on this gene, k13 orthologs from species sharing a recent common ancestor with P. falciparum and Plasmodium vivax were analyzed. These comparative studies were followed by genetic polymorphism analyses within P. falciparum using 982 complete Pfk13 sequences from public databases and new data obtained by next-generation sequencing from African and Haitian isolates. Although k13 orthologs evolve at heterogeneous rates, the gene was conserved across the genus, with only synonymous substitutions being found at residues where mutations linked to the delayed parasite clearance phenotype have been reported. This suggests that those residues were under constraint from undergoing nonsynonymous changes during evolution of the genus. No fixed nonsynonymous differences were found between Pfk13 and its orthologs in closely related species found in African apes. This indicates that all nonsynonymous substitutions currently found in Pfk13 are younger than the time of divergence between P. falciparum and its closely related species. At the population level, no mutations linked to delayed parasite clearance were found in our samples from Africa and Haiti. However, there is a high number of single Pfk13 mutations segregating in P. falciparum populations, and two predominant alleles are distributed worldwide. This pattern is discussed in terms of how changes in the efficacy of natural selection, affected by population expansion, may have allowed for the emergence of mutations tolerant to ACTs.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Resistencia a Medicamentos/genética , Filogenia , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/genética , Polimorfismo Genético/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-29439965

RESUMEN

The recent advances in next-generation sequencing technologies provide a new and effective way of tracking malaria drug-resistant parasites. To take advantage of this technology, an end-to-end Illumina targeted amplicon deep sequencing (TADS) and bioinformatics pipeline for molecular surveillance of drug resistance in P. falciparum, called malaria resistance surveillance (MaRS), was developed. TADS relies on PCR enriching genomic regions, specifically target genes of interest, prior to deep sequencing. MaRS enables researchers to simultaneously collect data on allele frequencies of multiple full-length P. falciparum drug resistance genes (crt, mdr1, k13, dhfr, dhps, and the cytochrome b gene), as well as the mitochondrial genome. Information is captured at the individual patient level for both known and potential new single nucleotide polymorphisms associated with drug resistance. The MaRS pipeline was validated using 245 imported malaria cases that were reported to the Centers for Disease Control and Prevention (CDC). The chloroquine resistance crt CVIET genotype (mutations underlined) was observed in 42% of samples, the highly pyrimethamine-resistant dhpsIRN triple mutant in 92% of samples, and the sulfadoxine resistance dhps mutation SGEAA in 26% of samples. The mdr1 NFSND genotype was found in 40% of samples. With the exception of two cases imported from Cambodia, no artemisinin resistance k13 alleles were identified, and 99% of patients carried parasites susceptible to atovaquone-proguanil. Our goal is to implement MaRS at the CDC for routine surveillance of imported malaria cases in the United States and to aid in the adoption of this system at participating state public health laboratories, as well as by global partners.


Asunto(s)
Antimaláricos/farmacología , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Resistencia a Medicamentos , Genotipo , Malaria/parasitología , Malaria/prevención & control , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Polimorfismo de Nucleótido Simple/genética , Pirimetamina/farmacología , Sulfadoxina/farmacología
10.
Bioinformatics ; 34(10): 1659-1665, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29186321

RESUMEN

Motivation: The standard protocol for detecting variation in DNA is to map millions of short sequence reads to a known reference and find loci that differ. While this approach works well, it cannot be applied where the sample contains dense variants or is too distant from known references. De novo assembly or hybrid methods can recover genomic variation, but the cost of computation is often much higher. We developed a novel k-mer algorithm and software implementation, Kestrel, capable of characterizing densely packed SNPs and large indels without mapping, assembly or de Bruijn graphs. Results: When applied to mosaic penicillin binding protein (PBP) genes in Streptococcus pneumoniae, we found near perfect concordance with assembled contigs at a fraction of the CPU time. Multilocus sequence typing (MLST) with this approach was able to bypass de novo assemblies. Kestrel has a very low false-positive rate when applied to the whole genome, and while Kestrel identified many variants missed by other methods, limitations of a purely k-mer based approach affect overall sensitivity. Availability and implementation: Source code and documentation for a Java implementation of Kestrel can be found at https://github.com/paudano/kestrel. All test code for this publication is located at https://github.com/paudano/kescases. Contact: paudano@gatech.edu or fredrik.vannberg@biology.gatech.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma Bacteriano , Haplotipos , Tipificación de Secuencias Multilocus/métodos , Programas Informáticos , Algoritmos , Genómica/métodos , Polimorfismo Genético , Streptococcus pneumoniae/genética
11.
Sci Rep ; 7: 41623, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28290538

RESUMEN

The innate immune system is vital to rapidly responding to pathogens and Toll-like receptors (TLRs) are a critical component of this response. Nanovesicular exosomes play a role in immunity, but to date their exact contribution to the dissemination of the TLR response is unknown. Here we show that exosomes from TLR stimulated cells can largely recapitulate TLR activation in distal cells in vitro. We can abrogate the action-at-a-distance signaling of exosomes by UV irradiation, demonstrating that RNA is crucial for their effector function. We are the first to show that exosomes derived from poly(I:C) stimulated cells induce in vivo macrophage M1-like polarization within murine lymph nodes. These poly(I:C) exosomes demonstrate enhanced trafficking to the node and preferentially recruit neutrophils as compared to control exosomes. This work definitively establishes the differential effector function for exosomes in communicating the TLR activation state of the cell of origin.


Asunto(s)
Exosomas/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Animales , Transporte Biológico , Línea Celular Tumoral , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Cinética , Lipopolisacáridos/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Modelos Biológicos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Poli I-C , Transcriptoma
12.
Genome Announc ; 5(6)2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28183758

RESUMEN

Plasmodium malariae is a protozoan parasite that can cause human malaria. The simian parasite Plasmodium brasilianum infects New World monkeys from Latin America and is morphologically indistinguishable from P. malariae Here, we report the first full draft genome sequence for P. brasilianum.

13.
PLoS One ; 10(4): e0123569, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25905921

RESUMEN

In translational cancer medicine, implicated pathways and the relevant master genes are of focus. Exome's specificity, processing-time, and cost advantage makes it a compelling tool for this purpose. However, analysis of exome lacks reliable combinatory analysis tools and techniques. In this paper we present XomAnnotate--a meta- and functional-analysis software for exome. We compared UnifiedGenotyper, Freebayes, Delly, and Lumpy algorithms that were designed for whole-genome and combined their strengths in XomAnnotate for exome data through meta-analysis to identify comprehensive mutation profile (SNPs/SNVs, short inserts/deletes, and SVs) of patients. The mutation profile is annotated followed by functional analysis through pathway enrichment and network analysis to identify most critical genes and pathways implicated in the disease genesis. The efficacy of the software is verified through MDS and clustering and tested with available 11 familial non-BRCA1/BRCA2 breast cancer exome data. The results showed that the most significantly affected pathways across all samples are cell communication and antigen processing and presentation. ESCO1, HYAL1, RAF1 and PRKCA emerged as the key genes. Network analysis further showed the purine and propanotate metabolism pathways along with RAF1 and PRKCA genes to be master regulators in these patients. Therefore, XomAnnotate is able to use exome data to identify entire mutation landscape, pathways, and the master genes accurately with wide concordance from earlier microarray and whole-genome studies--making it a suitable biomedical software for using exome in next-generation translational medicine.


Asunto(s)
Exoma , Investigación Biomédica Traslacional , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA