Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36679057

RESUMEN

Acetylcholinesterase (AChE) inhibitors remain the primary therapeutic drug that can alleviate Alzheimer's disease's (AD) symptoms. Several Cassia species have been shown to exert significant anti-AChE activity, which can be an alternative remedy for AD. Cassia timoriensis and Cassia grandis are potential plants with anti-AChE activity, but their phytochemical investigation is yet to be further conducted. The aims of this study were to identify the phytoconstituents of C. timoriensis and C. grandis and evaluate their inhibitory activity against AChE and butyrylcholinesterase (BChE). Two compounds were isolated for the first time from C. timoriensis: arachidyl arachidate (1) and luteolin (2). Five compounds were identified from C. grandis: ß-sitosterol (3), stigmasterol (4), cinnamic acid (5), 4-hydroxycinnamic acid (6), and hydroxymethylfurfural (7). Compound 2 showed significant inhibition towards AChE (IC50: 20.47 ± 1.10 µM) and BChE (IC50: 46.15 ± 2.20 µM), followed by 5 (IC50: 40.5 ± 1.28 and 373.1 ± 16.4 µM) and 6 (IC50: 43.4 ± 0.61 and 409.17 ± 14.80 µM) against AChE and BChE, respectively. The other compounds exhibited poor to slightly moderate AChE inhibitory activity. Molecular docking revealed that 2 showed good binding affinity towards TcAChE (PDB ID: 1W6R) and HsBChE (PDB ID: 4BDS). It formed a hydrogen bond with TYR121 at the peripheral anionic site (PAS, 2.04 Å), along with hydrophobic interactions with the anionic site and PAS (TRP84 and TYR121, respectively). Additionally, 2 formed three H-bonds with the binding site residues: one bond with catalytic triad, HIS438 at distance 2.05 Å, and the other two H-bonds with GLY115 and GLU197 at distances of 2.74 Å and 2.19 Å, respectively. The evidence of molecular interactions of 2 may justify the relevance of C. timoriensis as a cholinesterase inhibitor, having more promising activity than C. grandis.

2.
J Antibiot (Tokyo) ; 74(8): 485-495, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34163024

RESUMEN

Six new 11-mer peptaibols designed as zealpeptaibolins, A - F were isolated from the soil fungus, Trichoderma sp. RK10-F026, based on the principal component analysis of the MS data from five different culture compositions. Previously, 20-mer peptaibols from the same fungal strain were identified; 11-mer peptaibols in contrast were discovered from a different culture condition, signifying peptaibol production was culture condition-dependent. These peptaibols contained three Aib-Pro motifs in the sequence. The structures were established by NMR and HR-MS experiments including detailed MS/MS fragmentations. The absolute configurations were determined by Marfey's analysis. Zealpeptaibolin F exhibited the strongest cytotoxicity toward K562 leukemia cells with an IC50 value of 0.91 µM.


Asunto(s)
Antibióticos Antineoplásicos/química , Trichoderma/metabolismo , Animales , Antibióticos Antineoplásicos/biosíntesis , Antibióticos Antineoplásicos/farmacología , Antimaláricos/farmacología , Línea Celular Tumoral , Medios de Cultivo , Fermentación , Humanos , Células K562 , Espectroscopía de Resonancia Magnética , Conformación Molecular , Plasmodium falciparum/efectos de los fármacos , Microbiología del Suelo , Espectrometría de Masa por Ionización de Electrospray
3.
Biosci Biotechnol Biochem ; 85(1): 69-76, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33577647

RESUMEN

A new peptaibol, RK-026A (1) was isolated from a fungus, Trichoderma sp. RK10-F026, along with atroviridin B (2), alamethicin II (3), and polysporin B (4) as a cytotoxic compound, which was selected by principal component analysis of the MS data from 5 different culture conditions. The structure of 1 was determined as a new atroviridin B derivative containing Glu at the 18th residue instead of Gln by NMR and HR-MS analyses including the investigation of detailed MS/MS fragmentations. 1 showed cytotoxicity toward K562 leukemia cells at an IC50 value of 4.1 µm.


Asunto(s)
Técnicas de Cultivo , Peptaiboles/aislamiento & purificación , Microbiología del Suelo , Trichoderma/química , Humanos , Células K562 , Peso Molecular , Peptaiboles/química , Peptaiboles/toxicidad , Trichoderma/crecimiento & desarrollo
4.
Molecules ; 25(19)2020 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-33020403

RESUMEN

Seventeen methanol extracts from different plant parts of five different Cassia species, including C. timorensis, C. grandis, C. fistula, C. spectabilis, and C. alata were screened against acetylcholinesterase (AChE). C. timorensis extracts were found to exhibit the highest inhibition towards AChE whereby the leaf, stem, and flower methanol extracts showed 94-97% inhibition. As far as we are aware, C. timorensis is one of the least explored Cassia spp. for bioactivity. Further fractionation led to the identification of six compounds, isolated for the first time from C. timorensis: 3-methoxyquercetin (1), benzenepropanoic acid (2), 9,12,15-octadecatrienoic acid (3), ß-sitosterol (4), stigmasterol (5), and 1-octadecanol (6). Compound 1 showed moderate inhibition towards AChE (IC50: 83.71 µM), while the other compounds exhibited poor to slightly moderate AChE inhibitory activity. Molecular docking revealed that the methoxy substitution of 1 formed a hydrogen bond with TYR121 at the peripheral anionic site (PAS) and the hydroxyl group at C5 formed a covalent hydrogen bond with ASP72. Additionally, the OH group at the C3' position formed an interaction with the protein at the acyl pocket (PHE288). This possibly explains the activity of 1 in blocking the entry of acetylcholine (ACh, the neurotransmitter), thus impeding the hydrolysis of ACh.


Asunto(s)
Acetilcolinesterasa/química , Cassia/química , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Hojas de la Planta/química , Proteínas Ligadas a GPI/química
5.
Malar J ; 15: 62, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26847346

RESUMEN

BACKGROUND: The Plasmodium rhoptry-associated protein 1 (RAP-1) plays a role in the formation of the parasitophorous vacuole following the parasite's invasion of red blood cells. Although there is some evidence that the protein is recognized by the host's immune system, study of Plasmodium falciparum RAP-1 (PfRAP-1) suggests that it is not under immune pressure. A previous study on five old (1953-1962) P. knowlesi strains suggested that RAP-1 has limited genetic polymorphism and might be under negative selection. In the present study, 30 recent P. knowlesi isolates were studied to obtain a better insight into the polymorphism and natural selection of PkRAP-1. METHODS: Blood samples from 30 knowlesi malaria patients were used. These samples were collected between 2010 and 2014. The PkRAP-1 gene, which contains two exons, was amplified by PCR, cloned into Escherichia coli and sequenced. Genetic diversity and phylogenetic analyses were performed using MEGA6 and DnaSP ver. 5.10.00 programs. RESULTS: Thirty PkRAP-1 sequences were obtained. The nucleotide diversity (π) of exons 1, 2 and the total coding region (0.00915, 0.01353 and 0.01298, respectively) were higher than those of the old strains. Further analysis revealed a lower rate of non-synonymous (dN) than synonymous (dS) mutations, suggesting negative (purifying) selection of PkRAP-1. Tajima's D test and Fu and Li's D test values were not significant. At the amino acid level, 22 haplotypes were established with haplotype H7 having the highest frequency (7/34, 20.5 %). In the phylogenetic analysis, two distinct haplotype groups were observed. The first group contained the majority of the haplotypes, whereas the second had fewer haplotypes. CONCLUSIONS: The present study found higher genetic polymorphism in the PkRAP-1 gene than the polymorphism level reported in a previous study. This observation may stem from the difference in sample size between the present (n = 30) and the previous (n = 5) study. Synonymous and non-synonymous mutation analysis indicated purifying (negative) selection of the gene. The separation of PkRAP-1haplotypes into two groups provides further evidence to the postulation of two distinct P. knowlesi types or lineages.


Asunto(s)
Variación Genética/genética , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Selección Genética/genética , Variación Genética/fisiología , Haplotipos , Humanos , Malasia , Filogenia , Plasmodium knowlesi/clasificación , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Selección Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA