Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38398074

RESUMEN

PIEZO1 plays a crucial role in the human body as a mechanosensory ion channel. It has been demonstrated that PIEZO1 is important in tissue development and regulating many essential physiological processes. Studies have suggested that the PIEZO1 ion channel plays a role in invasion and progression in cancer; elevated levels of PIEZO1 have been correlated with increased migration in breast cancer cells, chemo-resistance and invasion in gastric cancer cells, and increased invasion of osteosarcoma cells. In addition, high PIEZO1 expression levels were correlated with a worse prognosis in glioma patients. On the other hand, studies in lung cancer have attributed high PIEZO1 levels to better patient outcomes. However, the clinical impact of PIEZO1 in breast cancer is not well characterized. Therefore, our goal was to determine the clinical relevance of PIEZO1 in breast cancer. An analysis of breast cancer data from The Cancer Genome Atlas (TCGA) was conducted to investigate PIEZO1 expression levels and correlation to survival, followed by validation in an independent dataset, GSE3494. We also performed gene set enrichment analysis (GSEA) and pathway enrichment analysis. We also analyzed the immune cell composition in breast tumors from TCGA through a CIBERSORT algorithm. Our results demonstrated that the PIEZO1 expression levels are higher in hormone-receptor (HR)-negative than in HR-positive cohorts. High PIEZO1 expression is correlated with a significant decrease in survival in HR-negative cohorts, especially in triple-negative breast cancer (TNBC), suggesting that PIEZO1 could be utilized as a prognostic biomarker in HR-negative breast cancer. GSEA showed that various signaling pathways associated with more invasive phenotypes and resistance to treatments, including epithelial-mesenchymal transition (EMT), hypoxia, and multiple signaling pathways, are enriched in high-PIEZO1 HR-negative tumors. Our results also demonstrated a decrease in CD8+ and CD4+ T cell infiltration in high-PIEZO1 HR-negative tumors. Further investigations are necessary to elucidate the mechanistic roles of PIEZO1 in HR-negative breast cancer.

2.
Breast Cancer Res ; 23(1): 65, 2021 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-34118960

RESUMEN

BACKGROUND: Breast cancer (BC) is the most common cancer in women and the leading cause of cancer-associated mortality in women. In particular, triple-negative BC (TNBC) has the highest rate of mortality due in large part to the lack of targeted treatment options for this subtype. Thus, there is an urgent need to identify new molecular targets for TNBC treatment. RALA and RALB are small GTPases implicated in growth and metastasis of a variety of cancers, although little is known of their roles in BC. METHODS: The necessity of RALA and RALB for TNBC tumor growth and metastasis were evaluated in vivo using orthotopic and tail-vein models. In vitro, 2D and 3D cell culture methods were used to evaluate the contributions of RALA and RALB during TNBC cell migration, invasion, and viability. The association between TNBC patient outcome and RALA and RALB expression was examined using publicly available gene expression data and patient tissue microarrays. Finally, small molecule inhibition of RALA and RALB was evaluated as a potential treatment strategy for TNBC in cell line and patient-derived xenograft (PDX) models. RESULTS: Knockout or depletion of RALA inhibited orthotopic primary tumor growth, spontaneous metastasis, and experimental metastasis of TNBC cells in vivo. Conversely, knockout of RALB increased TNBC growth and metastasis. In vitro, RALA and RALB had antagonistic effects on TNBC migration, invasion, and viability with RALA generally supporting and RALB opposing these processes. In BC patient populations, elevated RALA but not RALB expression is significantly associated with poor outcome across all BC subtypes and specifically within TNBC patient cohorts. Immunohistochemical staining for RALA in patient cohorts confirmed the prognostic significance of RALA within the general BC population and the TNBC population specifically. BQU57, a small molecule inhibitor of RALA and RALB, decreased TNBC cell line viability, sensitized cells to paclitaxel in vitro and decreased tumor growth and metastasis in TNBC cell line and PDX models in vivo. CONCLUSIONS: Together, these data demonstrate important but paradoxical roles for RALA and RALB in the pathogenesis of TNBC and advocate further investigation of RALA as a target for the precise treatment of metastatic TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Proteínas de Unión al GTP ral/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Ratones , Metástasis de la Neoplasia , Paclitaxel/uso terapéutico , Pronóstico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión al GTP ral/antagonistas & inhibidores , Proteínas de Unión al GTP ral/genética
3.
Oncotarget ; 11(8): 784-800, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32166000

RESUMEN

Triple-negative breast cancer (TNBC) shows limited therapeutic efficacy. PARP inhibitor has been approved to treat advanced BRCA-mutant breast cancer but shows high resistance. Therefore, the development of new therapeutics that sensitize TNBC irrespective of BRCA status is urgently needed. The neddylation pathway plays a critical role in many physiological processes by regulating the degradation of proteins. MLN4924, a selective inhibitor of the key neddylation enzyme NEDD8 Activation Enzyme (NAE1), shows higher sensitivity to both BRCA1-wild type and -mutant TNBCs compared to other breast cancer subtypes. MLN4924 induced re-replication with >4N DNA content leading to robust DNA damage. Accumulation of unrepaired DNA damage resulted in S and G2/M arrest causing apoptosis and senescence, due to the stabilization of the replication initiation protein CDT1 and the accumulation of cell cycle proteins upon MLN4924 treatment. Moreover, adding MLN4924 to the standard TNBC chemotherapeutic agent cisplatin increased the DNA damage level, further enhancing the sensitivity. In vivo, MLN4924 reduced tumor growth in a NOD-SCID mouse xenograft model by inducing DNA damage which was further augmented with the MLN4924 and cisplatin cotreatment. NAE1 is overexpressed in TNBC cell lines and in patients compared to other breast cancer subtypes suggesting that NAE1 status is prognostic of MLN4924 treatment response and outcome. Taken together, we demonstrated the mechanism of TNBC sensitization by the MLN4924 and MLN4924/cisplatin treatments irrespective of BRCA1 status, provided a strong justification for using MLN4924 alone or in combination with cisplatin, and identified a genetic background in which this combination will be particularly effective.

4.
DNA Repair (Amst) ; 65: 26-33, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29544213

RESUMEN

Telomeres, the ends of eukaryotic chromosomes, consist of repetitive DNA sequences and their bound proteins that protect the end from the DNA damage response. Short telomeres with fewer repeats are preferentially elongated by telomerase. Tel1, the yeast homolog of human ATM kinase, is preferentially recruited to short telomeres and Tel1 kinase activity is required for telomere elongation. Rif1, a telomere-binding protein, negatively regulates telomere length by forming a complex with two other telomere binding proteins, Rap1 and Rif2, to block telomerase recruitment. Rif1 has 14 SQ/TQ consensus phosphorylation sites for ATM kinases, including 6 in a SQ/TQ Cluster Domain (SCD) similar to other DNA damage response proteins. These 14 sites were analyzed as N-terminal, SCD and C-terminal domains. Mutating some sites to non-phosphorylatable residues increased telomere length in cells lacking Tel1 while a different set of phosphomimetic mutants increased telomere length in cells lacking Rif2, suggesting that Rif1 phosphorylation has both positive and negative effects on length regulation. While these mutations did not alter the sensitivity to DNA damaging agents, inducing telomere-specific damage by growing cells lacking YKU70 at high temperature revealed a role for the SCD. Mass spectrometry of Rif1 from wild type cells or those induced for telomere-specific DNA damage revealed increased phosphorylation in cells with telomere damage at an ATM consensus site in the SCD, S1351, and non-ATM sites S181 and S1637. A phosphomimetic rif1-S1351E mutation caused an increase in telomere length at synthetic telomeres but not natural telomeres. These results indicate that the Rif1 SCD can modulate Rif1 function. As all Rif1 orthologs have one or more SCD domains, these results for yeast Rif1 have implications for the regulation of Rif1 function in humans and other organisms.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Daño del ADN , ADN de Hongos , Fosforilación , Saccharomyces cerevisiae/genética
5.
PLoS One ; 11(7): e0159344, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27442013

RESUMEN

Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Reparación del ADN , Fase G1 , Fase S , Puntos de Control del Ciclo Celular/efectos de la radiación , Línea Celular , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Fase G1/efectos de la radiación , Histonas/metabolismo , Humanos , Modelos Biológicos , Fosforilación/efectos de la radiación , Fase S/efectos de la radiación , Especificidad por Sustrato/efectos de la radiación , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
6.
Mutat Res ; 776: 16-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26255936

RESUMEN

Acetylated histone H3 lysine 56 (H3K56Ac) is one of the reversible histone post-translational modifications (PTMs) responsive to DNA damage. We previously described a biphasic decrease and increase of epigenetic mark H3K56Ac in response to ultraviolet radiation (UVR)-induced DNA damage. Here, we report a new function of UV damaged DNA-binding protein (DDB) in deacetylation of H3K56Ac through specific histone deacetylases (HDACs). We show that simultaneous depletion of HDAC1/2 compromises the deacetylation of H3K56Ac, while depletion of HDAC1 or HDAC2 alone has no effect on H3K56Ac. The H3K56Ac deacetylation does not require functional nucleotide excision repair (NER) factors XPA and XPC, but depends on the function of upstream factors DDB1 and DDB2. UVR enhances the association of DDB2 with HDAC1 and, enforced DDB2 expression leads to translocation of HDAC1 to UVR-damaged chromatin. HDAC1 and HDAC2 are recruited to UVR-induced DNA damage spots, which are visualized by anti-XPC immunofluorescence. Dual HDAC1/2 depletion decreases XPC ubiquitination, but does not affect the recruitment of DDB2 to DNA damage. By contrast, the local accumulation of γH2AX at UVR-induced DNA damage spots was compromised upon HDAC1 as well as dual HDAC1/2 depletions. Additionally, UVR-induced ATM activation decreased in H12899 cells expressing H3K56Ac-mimicing H3K56Q. These results revealed a novel role of DDB in H3K56Ac deacetylation during early step of NER and the existence of active functional cross-talk between DDB-mediated damage recognition and H3K56Ac deacetylation.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Epigénesis Genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Histonas/metabolismo , Acetilación/efectos de la radiación , Sustitución de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Histonas/genética , Humanos , Mutación Missense , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/efectos de la radiación , Ubiquitinación/genética , Ubiquitinación/efectos de la radiación , Rayos Ultravioleta
7.
Biochim Biophys Acta ; 1842(7): 1071-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24726882

RESUMEN

Many ovarian cancer cells express stress-related molecule MICA/B on their surface that is recognized by Vγ2Vδ2 T cells through their NKG2D receptor, which is transmitted to downstream stress-signaling pathway. However, it is yet to be established how Vγ2Vδ2 T cell-mediated recognition of MICA/B signal is transmitted to downstream stress-related molecules. Identifying targeted molecules would be critical to develop a better therapy for ovarian cancer cells. It is well established that ATM/ATR signal transduction pathways, which is modulated by DNA damage, replication stress, and oxidative stress play central role in stress signaling pathway regulating cell cycle checkpoint and apoptosis. We investigated whether ATM/ATR and its down stream molecules affect Vγ2Vδ2 T cell-mediated cytotoxicity. Herein, we show that ATM/ATR pathway is modulated in ovarian cancer cells in the presence of Vγ2Vδ2 T cells. Furthermore, downregulation of ATM pathway resulted downregulation of MICA, and reduced Vγ2Vδ2 T cell-mediated cytotoxicity. Alternately, stimulating ATM pathway enhanced expression of MICA, and sensitized ovarian cancer cells for cytotoxic lysis by Vγ2Vδ2 T cells. We further show that combining currently approved chemotherapeutic drugs, which induced ATM signal transduction, along with Vγ2Vδ2 T cells enhanced cytotoxicity of resistant ovarian cancer cells. These findings indicate that ATM/ATR pathway plays an important role in tumor recognition, and drugs promoting ATM signaling pathway might be considered as a combination therapy together with Vγ2Vδ2 T cells for effectively treating resistant ovarian cancer cells.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/inmunología , Neoplasias Ováricas/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Antineoplásicos/farmacología , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
8.
Int J Cancer ; 133(9): 2133-44, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23595559

RESUMEN

Innate immune system has been known to play an important role in inhibiting the malignant transformation, tumor progression and invasion. However, the mechanistic basis remains ambiguous. Despite polyclonality of human γδ T cells, Vγ2Vδ2 T cell subset was shown to recognize and limit the growth of various tumors at various degrees. The differential recognition of the tumor cells by Vγ2Vδ2 T cells are yet to be defined. Our study reveals that γδ T cells limit in vitro growth of most breast tumor cells, such as SkBr7 (HER2+), MCF7 (ER+) and MDA-MB-231 (ER-) by inhibiting their survival and inducing apoptosis, except BrCa-MZ01 (PR+) cells. To investigate detail mechanisms of antineoplastic effects, we found that cell death was associated with the surface expression levels of MICA/B and ICAM1. Molecular signaling analysis demonstrated that inhibition of cell growth by γδ T cells was associated with the lower expression levels of cell survival-related molecules such as AKT, ERK and concomitant upregulation of apoptosis-related molecules, such as PARP, cleaved caspase 3 and tumor suppressor genes PTEN and P53. However, opposite molecular signaling was observed in the resistant cell line after coculture with γδ T cells. In vivo, antineoplastic effects of γδ T cells were also documented, where tumor growth was inhibited due to the downregulation of survival signals, strong induction of apoptotic molecules, disruption of microvasculature and increased infiltration of tumor associated macrophages. These findings reveal that a complex molecular signaling is involved in γδ T cell-mediated antineoplastic effects.


Asunto(s)
Apoptosis , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Subgrupos de Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Western Blotting , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Ciclo Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Células Tumorales Cultivadas
9.
DNA Repair (Amst) ; 12(4): 273-83, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23422745

RESUMEN

ATR and ATM kinases are central to the checkpoint activation in response to DNA damage and replication stress. However, the nature of the signal, which initially activates these kinases in response to UV damage, is unclear. Here, we have shown that DDB2 and XPC, two early UV damage recognition factors, are required for the damage-specific ATR and ATM recruitment and phosphorylation. ATR and ATM physically interacted with XPC and promptly localized to the UV damage sites. ATR and ATM recruitment and their phosphorylation were negatively affected in cells defective in DDB2 or XPC functions. Consequently, the phosphorylation of ATR and ATM substrates, Chk1, Chk2, H2AX, and BRCA1 was significantly reduced or abrogated in mutant cells. Furthermore, UV exposure of cells defective in DDB2 or XPC resulted in a marked decrease in BRCA1 and Rad51 recruitment to the damage site. Conversely, ATR- and ATM-deficiency failed to affect the recruitment of DDB2 and XPC to the damage site, and therefore did not influence the NER efficiency. These findings demonstrate a novel function of DDB2 and XPC in maintaining a vital cross-talk with checkpoint proteins, and thereby coordinating subsequent repair and checkpoint activation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Rayos Ultravioleta , Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA1/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Proteínas de Unión al ADN/genética , Células HeLa , Histonas/metabolismo , Humanos , Mutación , Fosforilación , Unión Proteica , Proteínas Quinasas/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño , Recombinasa Rad51/metabolismo
10.
Chromosoma ; 121(3): 277-90, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22289863

RESUMEN

In many organisms, telomere DNA consists of simple sequence repeat tracts that are required to protect the chromosome end. In the yeast Saccharomyces cerevisiae, tract maintenance requires two checkpoint kinases of the ATM family, Tel1p and Mec1p. Previous work has shown that Tel1p is recruited to functional telomeres with shorter repeat tracts to promote telomerase-mediated repeat addition, but the role of Mec1p is unknown. We found that Mec1p telomere association was detected as cells senesced when telomere function was compromised by extreme shortening due to either the loss of telomerase or the double-strand break binding protein Ku. Exonuclease I effects the removal of the 5' telomeric strand, and eliminating it prevented both senescence and Mec1p telomere association. Thus, in contrast to Tel1p, Mec1p associates with short, functionally compromised telomeres.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Nucleic Acids Res ; 39(18): 7931-45, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21727091

RESUMEN

Successful DNA repair within chromatin requires coordinated interplay of histone modifications, chaperones and remodelers for allowing access of repair and checkpoint machineries to damaged sites. Upon completion of repair, ordered restoration of chromatin structure and key epigenetic marks herald the cell's normal function. Here, we demonstrate such a restoration role of H3K56 acetylation (H3K56Ac) mark in response to ultraviolet (UV) irradiation of human cells. A fast initial deacetylation of H3K56 is followed by full renewal of an acetylated state at ~24-48 h post-irradiation. Histone chaperone, anti-silencing function-1 A (ASF1A), is crucial for post-repair H3K56Ac restoration, which in turn, is needed for the dephosphorylation of γ-H2AX and cellular recovery from checkpoint arrest. On the other hand, completion of DNA damage repair is not dependent on ASF1A or H3K56Ac. H3K56Ac restoration is regulated by ataxia telangiectasia mutated (ATM) checkpoint kinase. These cross-talking molecular cellular events reveal the important pathway components influencing the regulatory function of H3K56Ac in the recovery from UV-induced checkpoint arrest.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de la radiación , Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al ADN/fisiología , Histonas/metabolismo , Chaperonas Moleculares/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Supresoras de Tumor/fisiología , Rayos Ultravioleta , Acetilación , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular , Histonas/química , Humanos , Lisina/metabolismo
12.
PLoS One ; 5(6): e11007, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20543986

RESUMEN

Transcription factor II H (TFIIH) is comprised of core TFIIH and Cdk-activating kinase (CAK) complexes. Here, we investigated the molecular and cellular manifestation of the TFIIH compositional changes by XPG truncation mutations. We showed that both core TFIIH and CAK are rapidly recruited to damage sites in repair-proficient cells. Chromatin immunoprecipitation against TFIIH and CAK components revealed a physical engagement of CAK in nucleotide excision repair (NER). While XPD recruitment to DNA damage was normal, CAK was not recruited in severe XP-G and XP-G/CS cells, indicating that the associations of CAK and XPD to core TFIIH are differentially affected. A CAK inhibition approach showed that CAK activity is not required for assembling pre-incision machinery in vivo or for removing genomic photolesions. Instead, CAK is involved in Ser5-phosphorylation and UV-induced degradation of RNA polymerase II. The CAK inhibition impaired transcription from undamaged and UV-damaged reporter, and partially decreased transcription of p53-dependent genes. The overall results demonstrated that a) XP-G/CS mutations affect the disassembly state of TFIIH resulting in the dissociation of CAK, but not XPD from core TFIIH, and b) CAK activity is not essential for global genomic repair but involved in general transcription and damage-induced RNA polymerase II degradation.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Factor de Transcripción TFIIH/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Inmunoprecipitación de Cromatina , Daño del ADN , Fosforilación , Rayos Ultravioleta , Quinasa Activadora de Quinasas Ciclina-Dependientes
13.
Mol Cell Biol ; 29(23): 6206-19, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19805520

RESUMEN

Recent studies have implicated the role of the SWI/SNF ATP-dependent chromatin remodeling complex in nuclear excision repair (NER), but the mechanism of its function has remained elusive. Here, we show that the human SWI/SNF component human SNF5 (hSNF5) interacts with UV damage recognition factor XPC and colocalizes with XPC at the damage site. Inactivation of hSNF5 did not affect the recruitment of XPC but affected the recruitment of ATM checkpoint kinase to the damage site and ATM activation by phosphorylation. Consequently, hSNF5 deficiency resulted in a defect in H2AX and BRCA1 phosphorylation at the damage site. However, recruitment of ATR checkpoint kinase to the damage site was not affected by hSNF5 deficiency, supporting that hSNF5 functions downstream of ATR. Additionally, ATM/ATR-mediated Chk2/Chk1 phosphorylation was not affected in hSNF5-depleted cells in response to UV irradiation, suggesting that the cell cycle checkpoint is intact in these cells. Taken together, the results indicate that the SWI/SNF complex associates with XPC at the damage site and thereby facilitates the access of ATM, which in turn promotes H2AX and BRCA1 phosphorylation. We propose that the SWI/SNF chromatin remodeling function is utilized to increase the DNA accessibility of NER machinery and checkpoint factors at the damage site, which influences NER and ensures genomic integrity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA1/metabolismo , Ciclo Celular , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Eliminación de Gen , Humanos , Fosforilación , Unión Proteica/efectos de la radiación , Proteínas Quinasas/metabolismo , Proteína SMARCB1 , Factores de Transcripción/genética , Rayos Ultravioleta
14.
J Biol Chem ; 284(44): 30424-32, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19740755

RESUMEN

Accessibility within chromatin is an important factor in the prompt removal of UV-induced DNA damage by nucleotide excision repair (NER). Chromatin remodeling by the SWI/SNF complex has been shown to play an important modulating role in NER in vitro and yeast in vivo. Nevertheless, the molecular basis of cross-talk between SWI/SNF and NER in mammalian cells is not fully understood. Here, we show that knockdown of Brg1, the ATPase subunit of SWI/SNF, negatively affects the elimination of cyclobutane pyrimidine dimers (CPD), but not of pyrimidine (6, 4)pyrimidone photoproducts (6-4PP) following UV irradiation of mammalian cells. Brg1-deficient cells exhibit a lower chromatin relaxation as well as impaired recruitment of downstream NER factors, XPG and PCNA, to UV lesions. However, the assembly of upstream NER factors, DDB2 and XPC, at the damage site was unaffected by Brg1 knockdown. Interestingly, Brg1 interacts with XPC within chromatin and is recruited to UV-damaged sites in a DDB2- and XPC-dependent manner. Also, postirradiation decrease of XPC levels occurred more rapidly in Brg1-deficient than normal cells. Conversely, XPC transcription remained unaltered upon Brg1 knockdown indicating that Brg1 affects the stability of XPC protein following irradiation. Thus, Brg1 facilitates different stages of NER by initially modulating UV-induced chromatin relaxation and stabilizing XPC at the damage sites, and subsequently stimulating the recruitment of XPG and PCNA to successfully culminate the repair.


Asunto(s)
Ensamble y Desensamble de Cromatina , Daño del ADN , ADN Helicasas/fisiología , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Línea Celular , Proteínas Cromosómicas no Histona/fisiología , Humanos , Transporte de Proteínas , Dímeros de Pirimidina/metabolismo , Rayos Ultravioleta/efectos adversos
15.
Nucleic Acids Res ; 37(6): 1843-53, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19188254

RESUMEN

Histone covalent modifications and 26S proteasome-mediated proteolysis modulate many regulatory events in eukaryotes. In Saccharomyces cerevisiae, heterochromatin mediates transcriptional silencing at telomeres, HM loci and rDNA array. Here, we show that proteasome-associated Sem1p and its interacting partner, Ubp6p (a deubiquitinating enzyme), are essential to maintain telomeric silencing. Simultaneous deletion of SEM1 and UBP6 induces dramatic silencing defect accompanied by significantly increased level of ubiquitinated-histone H2B and markedly reduced levels of acetylated-lysine 14 and 23 on histone H3 at the telomeres. Further, the loss of Sem1p and Ubp6p triggers relocation of silencing factors (e.g. Sir proteins) from telomere to HM loci and rDNA array. Such relocation of silencing factors enhances gene silencing at HM loci and rDNA array, but diminishes telomeric silencing. Interestingly, both Sem1p and Ubp6p participate in the proteolytic function of the proteasome. However, we find that the telomeric silencing is not influenced by proteolysis. Taken together, our data demonstrate that Sem1p and Ubp6p maintain telomeric heterochromatin structure (and hence silencing) through modulation of histone covalent modifications and association of silencing factors independently of the proteolytic function of the proteasome, thus offering a new regulatory mechanism of telomeric silencing.


Asunto(s)
Endopeptidasas/metabolismo , Silenciador del Gen , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Telómero/metabolismo , Ubiquitinación , Acetilación , Regulación Fúngica de la Expresión Génica , Complejo de la Endopetidasa Proteasomal , Saccharomyces cerevisiae/metabolismo
16.
DNA Repair (Amst) ; 8(2): 262-73, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19059499

RESUMEN

Restoration of functionally intact chromatin structure following DNA damage processing is crucial for maintaining genetic and epigenetic information in human cells. Here, we show the UV-induced uH2A foci formation in cells lacking XPC, DDB2, CSA or CSB, but not in cells lacking XPA, XPG or XPF indicating that uH2A incorporation relied on successful damage repair occurring through either GGR or TCR sub-pathway. In contrast, XPA, XPG or XPF were not required for formation of gammaH2AX foci in asynchronous cells. Notably, the H2A ubiquitin ligase Ring1B, a component of Polycomb repressor complex 1, did not localize at DNA damage sites. However, histone chaperone CAF-1 showed distinct localization to the damage sites. Knockdown of CAF-1 p60 abolished CAF-1 as well as uH2A foci formation. CAF-1 p150 was found to associate with NER factors TFIIH, RPA p70 and PCNA in chromatin. These data demonstrate that successful NER of genomic lesions and prompt CAF-1-mediated chromatin restoration link uH2A incorporation at the sites of damage repair within chromatin.


Asunto(s)
Cromatina/metabolismo , Daño del ADN , Reparación del ADN , Genoma Humano/genética , Histonas/metabolismo , Ubiquitinación , Proteínas de Ciclo Celular/metabolismo , Factor 1 de Ensamblaje de la Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Complejo Represivo Polycomb 1 , Antígeno Nuclear de Célula en Proliferación/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Transporte de Proteínas , Proteína de Replicación A/metabolismo , Factores de Transcripción , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
17.
J Biol Chem ; 283(47): 32553-61, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18806262

RESUMEN

The p38 MAPK is a family of serine/threonine protein kinases that play important roles in cellular responses to external stress signals, e.g. UV irradiation. To assess the role of p38 MAPK pathway in nucleotide excision repair (NER), the most versatile DNA repair pathway, we determined the efficiency of NER in cells treated with p38 MAPK inhibitor SB203580 and found that p38 MAPK is required for the prompt repair of UV-induced DNA damage CPD. We further investigated the possible mechanism through which p38 MAPK regulates NER and found that p38 MAPK mediates UV-induced histone H3 acetylation and chromatin relaxation. Moreover, p38 MAPK also regulates UV-induced DDB2 ubiquitylation and degradation via phosphorylation of the target protein. Finally, our results showed that p38 MAPK is required for the recruitment of NER factors XPC and TFIIH to UV-induced DNA damage sites. We conclude that p38 MAPK regulates chromatin remodeling as well as DDB2 degradation for facilitating NER factor assembly.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Enzimológica de la Expresión Génica , Histonas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Cromatina/metabolismo , Inhibidores Enzimáticos/farmacología , Células HeLa , Humanos , Imidazoles/farmacología , Modelos Biológicos , Modelos Químicos , Fosforilación , Piridinas/farmacología , Ubiquitina/metabolismo , Rayos Ultravioleta
18.
Mol Cell ; 27(5): 851-8, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17803948

RESUMEN

In many organisms, telomeric DNA consists of long tracts of short repeats. Shorter tracts are preferentially lengthened by telomerase, suggesting a conserved mechanism that recognizes and elongates short telomeres. Tel1p, an ATM family checkpoint kinase, plays an important role in telomere elongation, as cells lacking Tel1p have short telomeres and show reduced recruitment of telomerase components to telomeres. We show that Tel1p association increased as telomeres shortened in vivo in the presence or absence of telomerase and that Tel1p preferentially associated with the shortest telomeres. Tel1p association was independent of Tel1p kinase activity and enhanced by Mre11p. Tel1p overexpression simultaneously stimulated telomerase-mediated elongation and Tel1p association with all telomeres. Thus, Tel1p preferentially associates with the shortest telomeres and stimulates their elongation by telomerase.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Senescencia Celular , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/análisis , Modelos Genéticos , Proteínas Serina-Treonina Quinasas/análisis , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/análisis , Telómero/ultraestructura
19.
Nat Genet ; 33(4): 522-6, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12640455

RESUMEN

An organism's lifespan is modulated by environmental conditions. When nutrients are abundant, the metabolism of many organisms shifts to growth or reproduction at the expense of longer lifespan, whereas a scarcity of nutrients reverses this shift. These correlations suggest that organisms respond to environmental changes by altering their metabolism to promote either reproduction and growth or long life. The only previously reported signaling mechanism involved in this response is the nutrient-responsive insulin/insulin-like growth factor-1 receptor pathway. Here we report another pathway that controls the length of yeast lifespan. Commitment to cell growth activates the Slt2p MAP kinase pathway, which phosphorylates the transcriptional silencing protein Sir3p, resulting in a shorter lifespan. Elimination of the Sir3p phosphorylation site at Ser275 extended lifespan by 38%. Lifespan extension occurs by a mechanism that is independent of suppressing rDNA recombination. Thus, Slt2p is an enzymatic regulator of silencing function that couples commitment to cell growth and shorter lifespan.


Asunto(s)
Silenciador del Gen , Proteínas Quinasas Activadas por Mitógenos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Alelos , Western Blotting , Proteínas Fúngicas/metabolismo , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Sistemas de Lectura Abierta , Fenotipo , Fosforilación , Pruebas de Precipitina , Estructura Terciaria de Proteína , Recombinación Genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...