Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioscience ; 72(3): 233-246, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35241971

RESUMEN

Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.

2.
Glob Chang Biol ; 27(8): 1560-1571, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33464665

RESUMEN

Increasing water-use efficiency (WUE), the ratio of carbon gain to water loss, is a key mechanism that enhances carbon uptake by terrestrial vegetation under rising atmospheric CO2 (ca ). Existing theory and empirical evidence suggest a proportional WUE increase in response to rising ca as plants maintain a relatively constant ratio between the leaf intercellular (ci ) and ambient (ca ) partial CO2 pressure (ci /ca ). This has been hypothesized as the main driver of the strengthening of the terrestrial carbon sink over the recent decades. However, proportionality may not characterize CO2 effects on WUE on longer time-scales and the role of climate in modulating these effects is uncertain. Here, we evaluate long-term WUE responses to ca and climate from 1901 to 2012 CE by reconstructing intrinsic WUE (iWUE, the ratio of photosynthesis to stomatal conductance) using carbon isotopes in tree rings across temperate forests in the northeastern USA. We show that iWUE increased steadily from 1901 to 1975 CE but remained constant thereafter despite continuously rising ca . This finding is consistent with a passive physiological response to ca and coincides with a shift to significantly wetter conditions across the region. Tree physiology was driven by summer moisture at multi-decadal time-scales and did not maintain a constant ci /ca in response to rising ca indicating that a point was reached where rising CO2 had a diminishing effect on tree iWUE. Our results challenge the mechanism, magnitude, and persistence of CO2 's effect on iWUE with significant implications for projections of terrestrial productivity under a changing climate.


Asunto(s)
Dióxido de Carbono , Agua , Secuestro de Carbono , Clima , Bosques
3.
New Phytol ; 228(6): 1781-1795, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33439504

RESUMEN

Rising atmospheric CO2 (ca) is expected to promote tree growth and lower water loss via changes in leaf gas exchange. However, uncertainties remain if gas-exchange regulation strategies are homeostatic or dynamical in response to increasing ca, as well as evolving climate and pollution inputs. Using a suite of tree ring-based δ13C-derived physiological parameters (Δ13C, ci, iWUE) and tree growth from a mesic, low elevation stand of canopy-dominant Tsuga canadensis in north-eastern USA, we investigated the influence of rising ca, climate and pollution on, and characterised the dynamical regulation strategy of, leaf gas exchange at multidecadal scales. Isotopic and growth time series revealed an evolving physiological response in which the species shifted its leaf gas-exchange strategy dynamically (constant ci; constant ci/ca; constant ca - ci) in response to rising ca, moisture availability and site conditions over 111 yr. Tree iWUE plateaued after 1975, driven by greater moisture availability and a changing soil biogeochemistry that may have impaired a stomatal response. Results suggested that trees may exhibit more complex physiological responses to the changing environmental conditions over multidecadal periods, and complicating the parameterisation of Earth system models and the estimation of future carbon sink capacity and water balance in midlatitude forests and elsewhere.


Asunto(s)
Tracheophyta , Dióxido de Carbono , Isótopos de Carbono/análisis , Bosques , Árboles , Tsuga , Estados Unidos , Agua
4.
Sci Total Environ ; 637-638: 1480-1491, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29801241

RESUMEN

Following growth declines and increased mortality linked to acid deposition-induced calcium depletion, red spruce (Picea rubens Sarg.) in the northeastern United States are experiencing a recovery. We found that more than 75% of red spruce trees and 90% of the plots examined in this study exhibited increasing growth since 2001. To understand this change, we assessed the relationship between red spruce radial growth and factors that may influence growth: tree age and diameter, stand dynamics, plot characteristics (elevation, slope, aspect, geographical position), and a suite of environmental variables (temperature, precipitation, climate and precipitation indices (degree days, SPEI [standardized precipitation evapotranspiration index], and acid deposition [SO42-, NO3-, pH of rainfall, cation:anion ratio of rainfall]) for 52 plots (658 trees) from five states (spanning 2.5°N × 5°W). Examining the growth relationships from 1925 to 2012, we found that while there was variability in response to climate and acid deposition (limited to 1980-2012) by elevation and location, plot and tree factors did not adequately explain growth. Higher temperatures outside the traditional growing season (e.g., fall, winter, and spring) were related to increased growth. Nitrogen deposition (1980-2012) was associated with lower growth, but the strength of this relationship has lessened over time. Overall, we predict sustained favorable conditions for red spruce in the near term as acid deposition continues to decline and non-traditional growing season (fall through spring) temperatures moderate, provided that overall temperatures and precipitation remain adequate for growth.


Asunto(s)
Lluvia Ácida/análisis , Picea/fisiología , Clima , Sequías , Geografía , New England , Nitrógeno/análisis , Pinus , Temperatura , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...