Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 221(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38411744

RESUMEN

T cells are integral in mediating adaptive immunity to infection, autoimmunity, and cancer. Upon immune challenge, T cells exit from a quiescent state, followed by clonal expansion and effector differentiation. These processes are shaped by three established immune signals, namely antigen stimulation (Signal 1), costimulation (Signal 2), and cytokines (Signal 3). Emerging findings reveal that nutrients, including glucose, amino acids, and lipids, are crucial regulators of T cell responses and interplay with Signals 1-3, highlighting nutrients as Signal 4 to license T cell immunity. Here, we first summarize the functional importance of Signal 4 and the underlying mechanisms of nutrient transport, sensing, and signaling in orchestrating T cell activation and quiescence exit. We also discuss the roles of nutrients in programming T cell differentiation and functional fitness and how nutrients can be targeted to improve disease therapy. Understanding how T cells respond to Signal 4 nutrients in microenvironments will provide insights into context-dependent functions of adaptive immunity and therapeutic interventions.


Asunto(s)
Inmunidad Adaptativa , Linfocitos T , Aminoácidos , Autoinmunidad , Nutrientes
2.
Nat Cell Biol ; 24(11): 1642-1654, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36302969

RESUMEN

Phosphatase and tensin homologue (PTEN) is frequently mutated in human cancer, but its roles in lymphopoiesis and tissue homeostasis remain poorly defined. Here we show that PTEN orchestrates a two-step developmental process linking antigen receptor and IL-23-Stat3 signalling to type-17 innate-like T cell generation. Loss of PTEN leads to pronounced accumulation of mature IL-17-producing innate-like T cells in the thymus. IL-23 is essential for their accumulation, and ablation of IL-23 or IL-17 signalling rectifies the reduced survival of female PTEN-haploinsufficient mice that model human patients with PTEN mutations. Single-cell transcriptome and network analyses revealed the dynamic regulation of PTEN, mTOR and metabolic activities that accompanied type-17 cell programming. Furthermore, deletion of mTORC1 or mTORC2 blocks PTEN loss-driven type-17 cell accumulation, and this is further shaped by the Foxo1 and Stat3 pathways. Collectively, our study establishes developmental and metabolic signalling networks underpinning type-17 cell fate decisions and their functional effects at coordinating PTEN-dependent tissue homeostasis.


Asunto(s)
Interleucina-17 , Linfocitos T , Humanos , Femenino , Ratones , Animales , Linfocitos T/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal , Homeostasis , Interleucina-23
3.
Nature ; 600(7888): 308-313, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34795452

RESUMEN

Nutrients are emerging regulators of adaptive immunity1. Selective nutrients interplay with immunological signals to activate mechanistic target of rapamycin complex 1 (mTORC1), a key driver of cell metabolism2-4, but how these environmental signals are integrated for immune regulation remains unclear. Here we use genome-wide CRISPR screening combined with protein-protein interaction networks to identify regulatory modules that mediate immune receptor- and nutrient-dependent signalling to mTORC1 in mouse regulatory T (Treg) cells. SEC31A is identified to promote mTORC1 activation by interacting with the GATOR2 component SEC13 to protect it from SKP1-dependent proteasomal degradation. Accordingly, loss of SEC31A impairs T cell priming and Treg suppressive function in mice. In addition, the SWI/SNF complex restricts expression of the amino acid sensor CASTOR1, thereby enhancing mTORC1 activation. Moreover, we reveal that the CCDC101-associated SAGA complex is a potent inhibitor of mTORC1, which limits the expression of glucose and amino acid transporters and maintains T cell quiescence in vivo. Specific deletion of Ccdc101 in mouse Treg cells results in uncontrolled inflammation but improved antitumour immunity. Collectively, our results establish epigenetic and post-translational mechanisms that underpin how nutrient transporters, sensors and transducers interplay with immune signals for three-tiered regulation of mTORC1 activity and identify their pivotal roles in licensing T cell immunity and immune tolerance.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Nutrientes , Mapas de Interacción de Proteínas , Linfocitos T Reguladores , Animales , Femenino , Masculino , Ratones , Proteínas Portadoras/metabolismo , Sistemas CRISPR-Cas/genética , Factores de Transcripción Forkhead/metabolismo , Genoma/genética , Homeostasis , Tolerancia Inmunológica , Inflamación/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/inmunología , Proteínas Nucleares/metabolismo , Nutrientes/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Transactivadores/metabolismo
4.
Methods Mol Biol ; 2388: 181-192, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34524673

RESUMEN

Emerging research has highlighted the importance of metabolic pathways and metabolites in dictating immune cell lineage decisions during thymocyte development. Here, we discuss several complementary approaches, including flow cytometry, metabolic flux, and transcriptome analyses, to characterize the dynamic changes in metabolic profiles associated with invariant natural killer T cell development.


Asunto(s)
Células T Asesinas Naturales , Citometría de Flujo , Activación de Linfocitos , Metaboloma , Células T Asesinas Naturales/inmunología
5.
Artículo en Inglés | MEDLINE | ID: mdl-33820774

RESUMEN

The formation of long-lived memory T cells is a critical feature of the adaptive immune response. T cells undergo metabolic reprogramming to establish a functional memory population. While initial studies characterized key metabolic pathways necessary for memory T-cell development, recent findings highlight that metabolic regulation of memory T-cell subsets is diverse. Here we describe the different requirements for metabolic programs and metabolism-related signaling pathways in memory T-cell development. We further discuss the contribution of cellular metabolism to memory T-cell functional reprogramming and stemness within acute and chronic inflammatory environments. Last, we highlight knowledge gaps and propose approaches to determine the roles of metabolites and metabolic enzymes in memory T-cell fate. Understanding how cellular metabolism regulates a functionally diverse memory population will undoubtedly provide new therapeutic insights to modulate protective T-cell immunity in human disease.


Asunto(s)
Reprogramación Celular , Células T de Memoria/metabolismo , Animales , Humanos , Transducción de Señal
6.
Cell ; 184(5): 1245-1261.e21, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636132

RESUMEN

How early events in effector T cell (TEFF) subsets tune memory T cell (TMEM) responses remains incompletely understood. Here, we systematically investigated metabolic factors in fate determination of TEFF and TMEM cells using in vivo pooled CRISPR screening, focusing on negative regulators of TMEM responses. We found that amino acid transporters Slc7a1 and Slc38a2 dampened the magnitude of TMEM differentiation, in part through modulating mTORC1 signaling. By integrating genetic and systems approaches, we identified cellular and metabolic heterogeneity among TEFF cells, with terminal effector differentiation associated with establishment of metabolic quiescence and exit from the cell cycle. Importantly, Pofut1 (protein-O-fucosyltransferase-1) linked GDP-fucose availability to downstream Notch-Rbpj signaling, and perturbation of this nutrient signaling axis blocked terminal effector differentiation but drove context-dependent TEFF proliferation and TMEM development. Our study establishes that nutrient uptake and signaling are key determinants of T cell fate and shape the quantity and quality of TMEM responses.


Asunto(s)
Aminoácidos/metabolismo , Linfocitos T CD8-positivos/citología , Memoria Inmunológica , Transducción de Señal , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Sistemas CRISPR-Cas , Ciclo Celular , Diferenciación Celular , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Transgénicos , Células Precursoras de Linfocitos T/citología
8.
J Exp Med ; 217(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32289155

RESUMEN

Invariant natural killer T (iNKT) cells acquire effector functions during development by mechanisms that remain poorly understood. Here, we show that the Hippo kinases Mst1 and Mst2 act as molecular rheostats for the terminal maturation and effector differentiation programs of iNKT cells. Loss of Mst1 alone or together with Mst2 impedes iNKT cell development, associated with defective IL-15-dependent cell survival. Mechanistically, Mst1 enforces iNKT cellular and transcriptional quiescence associated with maturation and commitment to iNKT1 cells by suppressing proliferation and Opa1-related mitochondrial metabolism that are dynamically regulated during iNKT cell development. Furthermore, Mst1 shapes the reciprocal fate decisions between iNKT1 and iNKT17 effector cells, which respectively depend upon mitochondrial dynamics and ICOS-mTORC2 signaling. Collectively, these findings establish Mst1 as a crucial regulator of mitochondrial homeostasis and quiescence in iNKT cell development and effector lineage differentiation and highlight that establishment of quiescence programs underlies iNKT cell development and effector maturation.


Asunto(s)
Ciclo Celular , Linaje de la Célula , Factor de Crecimiento de Hepatocito/metabolismo , Células T Asesinas Naturales/citología , Células T Asesinas Naturales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Supervivencia Celular , Regulación de la Expresión Génica , Vía de Señalización Hippo , Homeostasis , Interleucina-15/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Serina-Treonina Quinasa 3 , Transcripción Genética
9.
Cell Res ; 30(4): 328-342, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203134

RESUMEN

Adaptive immunity is essential for pathogen and tumor eradication, but may also trigger uncontrolled or pathological inflammation. T cell receptor, co-stimulatory and cytokine signals coordinately dictate specific signaling networks that trigger the activation and functional programming of T cells. In addition, cellular metabolism promotes T cell responses and is dynamically regulated through the interplay of serine/threonine kinases, immunological cues and nutrient signaling networks. In this review, we summarize the upstream regulators and signaling effectors of key serine/threonine kinase-mediated signaling networks, including PI3K-AGC kinases, mTOR and LKB1-AMPK pathways that regulate metabolism, especially in T cells. We also provide our perspectives about the pending questions and clinical applicability of immunometabolic signaling. Understanding the regulators and effectors of immunometabolic signaling networks may uncover therapeutic targets to modulate metabolic programming and T cell responses in human disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Linfocitos T , Serina-Treonina Quinasas TOR/inmunología , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Humanos , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo
10.
Sci Adv ; 6(1): eaaw6443, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31911938

RESUMEN

Regulatory T cell (Treg) activation and expansion occur during neonatal life and inflammation to establish immunosuppression, yet the mechanisms governing these events are incompletely understood. We report that the transcriptional regulator c-Myc (Myc) controls immune homeostasis through regulation of Treg accumulation and functional activation. Myc activity is enriched in Tregs generated during neonatal life and responding to inflammation. Myc-deficient Tregs show defects in accumulation and ability to transition to an activated state. Consequently, loss of Myc in Tregs results in an early-onset autoimmune disorder accompanied by uncontrolled effector CD4+ and CD8+ T cell responses. Mechanistically, Myc regulates mitochondrial oxidative metabolism but is dispensable for fatty acid oxidation (FAO). Indeed, Treg-specific deletion of Cox10, which promotes oxidative phosphorylation, but not Cpt1a, the rate-limiting enzyme for FAO, results in impaired Treg function and maturation. Thus, Myc coordinates Treg accumulation, transitional activation, and metabolic programming to orchestrate immune homeostasis.


Asunto(s)
Ácidos Grasos/metabolismo , Terapia de Inmunosupresión , Inflamación/inmunología , Proteínas Proto-Oncogénicas c-myc/genética , Linfocitos T Reguladores/inmunología , Transferasas Alquil y Aril/inmunología , Animales , Animales Recién Nacidos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Citometría de Flujo , Homeostasis/inmunología , Inflamación/genética , Proteínas de la Membrana/inmunología , Ratones , Oxidación-Reducción , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas c-myc/inmunología , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA