Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673159

RESUMEN

In this study, a detailed structural characterization of epitaxial La0.6Sr0.4CoO3-δ (LSC) films grown in (100), (110), and (111) orientations was conducted. LSC is a model air electrode material in solid oxide fuel and electrolysis cells and understanding the correlation of bulk structure and catalytic activity is essential for the design of future electrode materials. Thin films were grown on single crystals of the perovskite material La0.95Sr0.05Ga0.95Mg0.05O3-δ cut in three different directions. This enabled an examination of structural details at the atomic scale for a realistic material combination in solid oxide cells. The investigation involved the application of atomic force microscopy, X-ray diffraction, and high-resolution transmission electron microscopy to explore the distinct properties of these thin films. Interestingly, ordering phenomena in both cationic as well as anionic sublattices were found, despite the fact that the thin films were never at higher temperatures than 600 °C. Cationic ordering was found in spherical precipitates, whereas the ordering of oxygen vacancies led to the partial transition to brownmillerite in all three orientations. Our results indicate a very high oxygen vacancy concentration in all three thin films. Lattice strains in-plane and out-of-plane was measured, and its implications for the structural modifications are discussed.

2.
J Mater Chem A Mater ; 11(44): 24072-24088, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014361

RESUMEN

The level of oxygen deficiency δ in high-voltage spinels of the composition LiNi0.5Mn1.5O4-δ (LNMO) significantly influences the thermodynamic and kinetic properties of the material, ultimately affecting the cell performance of the corresponding lithium-ion batteries. This study presents a comprehensive defect chemical analysis of LNMO thin films with oxygen vacancy concentrations of 2.4% and 0.53%, focusing particularly on the oxygen vacancy regime around 4 V versus Li+/Li. A set of electrochemical properties is extracted from impedance measurements as a function of state-of-charge for the full tetrahedral-site regime (3.8 to 4.9 V versus Li+/Li). A defect chemical model (Brouwer diagram) is derived from the data, providing a coherent explanation for all important trends of the electrochemical properties and charge curve. Highly resolved chemical capacitance measurements allow a refining of the defect model for the oxygen vacancy regime, showing that a high level of oxygen deficiency not only impacts the amount of redox active Mn3+/4+, but also promotes the trapping of electrons in proximity to an oxygen vacancy. The resulting stabilisation of Mn3+ thereby mitigates the voltage reduction in the oxygen vacancy regime. These findings offer valuable insights into the complex influence of oxygen deficiency on the performance of lithium-ion batteries based on LNMO.

3.
Chem Mater ; 35(13): 5135-5149, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37456594

RESUMEN

Spinels of the general formula Li2-δM2O4 are an essential class of cathode materials for Li-ion batteries, and their optimization in terms of electrode potential, accessible capacity, and charge/discharge kinetics relies on an accurate understanding of the underlying solid-state mass and charge transport processes. In this work, we report a comprehensive impedance study of sputter-deposited epitaxial Li2-δMn2O4 thin films as a function of state-of-charge for almost the entire tetrahedral-site regime (1 ≤ δ ≤ 1.9) and provide a complete set of electrochemical properties, consisting of the charge-transfer resistance, ionic conductivity, volume-specific chemical capacitance, and chemical diffusivity. The obtained properties vary by up to three orders of magnitude and provide essential insights into the point defect concentration dependences of the overall electrode potential. We introduce a defect chemical model based on simple concentration dependences of the Li chemical potential, considering the tetrahedral and octahedral lattice site restrictions defined by the spinel crystal structure. The proposed model is in excellent qualitative and quantitative agreement with the experimental data, excluding the two-phase regime around 4.15 V. It can easily be adapted for other transition metal stoichiometries and doping states and is thus applicable to the defect chemical analysis of all spinel-type cathode materials.

4.
ACS Appl Energy Mater ; 6(12): 6712-6720, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37388294

RESUMEN

The oxygen exchange kinetics and the surface chemistry of epitaxially grown, dense La0.6Sr0.4CoO3-δ (LSC) thin films in three different orientations, (001), (110), and (111), were investigated by means of in situ impedance spectroscopy during pulsed laser deposition (i-PLD) and near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS). i-PLD measurements showed that pristine LSC surfaces exhibit very fast surface exchange kinetics but revealed no significant differences between the specific orientations. However, as soon as the surfaces were in contact with acidic, gaseous impurities, such as S-containing compounds in nominally pure measurement atmospheres, NAP-XPS measurements revealed that the (001) orientation is substantially more susceptible to the formation of sulfate adsorbates and a concomitant performance decrease. This result is further substantiated by a stronger increase of the work function on (001)-oriented LSC surfaces upon sulfate adsorbate formation and by a faster performance degradation of these surfaces in ex situ measurement setups. This phenomenon has potentially gone unnoticed in the discussion of the interplay between the crystal orientation and the oxygen exchange kinetics and might have far-reaching implications for real solid oxide cell electrodes, where porous materials exhibit a wide variety of differently oriented and reconstructed surfaces.

5.
Phys Chem Chem Phys ; 25(1): 142-153, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36476841

RESUMEN

La0.6Sr0.4FeO3-δ (LSF) electrodes were grown on different electrolyte substrates by pulsed laser deposition (PLD) and their oxygen exchange reaction (OER) resistance was tracked in real-time by in situ PLD impedance spectroscopy (i-PLD) inside the PLD chamber. This enables measurements on pristine surfaces free from any contaminations and the direct observation of thickness dependent properties. As substrates, yttria-stabilized zirconia single crystals (YSZ) were used for polycrystalline LSF growth and La0.95Sr0.05Ga0.95Mg0.05O3-δ (LSGM) single crystals or YSZ single crystals with a 5 nm buffer-layer of Gd0.2Ce0.8O2-δ for epitaxial LSF film growth. While polycrystalline LSF electrodes show a constant OER resistance in a broad thickness range, epitaxially grown LSF electrodes exhibit a continuous and strong increase of the OER resistance with film thickness until ≈60 nm. In addition, the activation energy of the OER resistance increases by 0.23 eV compared to polycrystalline LSF. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) measurements reveal an increasing contraction of the out-of-plane lattice parameter in the epitaxial LSF electrodes over electrode thickness. Defect thermodynamic simulations suggest that the decrease of the LSF unit cell volume is accompanied by a lowering of the oxygen vacancy concentration, explaining both the resistive increase and the increased activation energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA