Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 584: 34-44, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33039681

RESUMEN

Non-viral gene therapy based on gene silencing with small interfering RNA (siRNA) has attracted great interest over recent years. Among various types of cationic complexation agents, amino acid-based surfactants have been recently explored for nucleic acid delivery due to their low toxicity and high biocompatibility. Monoolein (MO), in turn, has been used as helper lipid in liposomal systems due to its ability to form inverted nonbilayer structures that enhance fusogenicity, thus contributing to higher transfection efficiency. In this work, we focused on the development of nanovectors for siRNA delivery based on three gemini amino acid-based surfactants derived from serine - (12Ser)2N12, amine derivative; (12Ser)2COO12, ester derivative; and (12Ser)2CON12, amide derivative - individually combined with MO as helper lipid. The inclusion of MO in the cationic surfactant system influences the morphology and size of the mixed aggregates. Furthermore, the gemini surfactant:MO systems showed the ability to efficiently complex siRNA, forming stable lipoplexes, in some cases clearly depending on the MO content, without inducing significant levels of cytotoxicity. High levels of gene silencing were achieved in comparison with a commercially available standard indicating that these gemini:MO systems are promising candidates as lipofection vectors for RNA interference (RNAi)-based therapies.


Asunto(s)
Serina , Tensoactivos , Glicéridos , ARN Interferente Pequeño/genética , Transfección
2.
Pharmaceutics ; 11(9)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540519

RESUMEN

HIV/AIDS stands as a global burden, and vaginal microbicides constitute a promising strategy for topical pre-exposure prophylaxis. Preceding the development of a microbicide containing tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC), in silico and in vitro studies were performed to evaluate the physicochemical characteristics of both drugs, and to study their biophysical impact in lipid model systems. Results from these pre-formulation studies defined hydrogels as adequate vehicles to incorporate TDF-loaded liposomes and FTC. After studying interactions with mucin, zwitterionic liposomes with a mean diameter of 134 ± 13 nm, an encapsulation TDF efficiency of approximately 84%, and a transition temperature of 41 °C were selected. The chosen liposomal formulation was non-cytotoxic to HEC-1-A and CaSki cells, and was able to favor TDF permeation across polysulfone membranes (Jss = 9.9 µg·cm-2·h-1). After the incorporation of TDF-loaded liposomes and FTC in carbomer hydrogels, the drug release profile was sustained over time, reaching around 60% for both drugs within 3-6 h, and best fitting the Weibull model. Moreover, liposomal hydrogels featured pseudoplastic profiles that were deemed suitable for topical application. Overall, the proposed liposomal hydrogels may constitute a promising formulation for the vaginal co-delivery of TDF/FTC.

3.
Int J Mol Sci ; 19(11)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384433

RESUMEN

Diclofenac (DCF), the most widely consumed non-steroidal anti-inflammatory drug (NSAID) worldwide, is associated with adverse typical effects, including gastrointestinal (GI) complications. The present study aims to better understand the topical toxicity induced by DCF using membrane models that mimic the physiological, biophysical, and chemical environments of GI mucosa segments. For this purpose, phospholipidic model systems that mimic the GI protective lining and lipid models of the inner mitochondrial membrane were used together with a wide set of techniques: derivative spectrophotometry to evaluate drug distribution at the membrane; steady-state and time-resolved fluorescence to predict drug location at the membrane; fluorescence anisotropy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), and calcein leakage studies to evaluate the drug-induced disturbance on membrane microviscosity and permeability; and small- and wide-angle X-ray scattering studies (SAXS and WAXS, respectively), to evaluate the effects of DCF at the membrane structure. Results demonstrated that DCF interacts chemically with the phospholipids of the GI protective barrier in a pH-dependent manner and confirmed the DCF location at the lipid headgroup region, as well as DCF's higher distribution at mitochondrial membrane contact points where the impairment of biophysical properties is consistent with the uncoupling effects reported for this drug.


Asunto(s)
Diclofenaco/efectos adversos , Mucosa Gástrica , Mucosa Intestinal , Modelos Biológicos , Fosfolípidos , Biofisica , Diclofenaco/farmacología , Fluoresceínas/química , Fluoresceínas/metabolismo , Mucosa Gástrica/química , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Humanos , Mucosa Intestinal/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Fosfolípidos/química , Fosfolípidos/metabolismo
4.
J Liposome Res ; 26(3): 199-210, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26340109

RESUMEN

We report the development and characterization of a novel nanometric system for specific delivery of therapeutic siRNA for cancer treatment. This vector is based on a binary mixture of the cationic surfactant dioctadecyldimethylammonium chloride (DODAC) and the helper lipid monoolein (MO). These liposomes were previously validated by our research group as promising non-viral vectors for nucleic acid delivery. In this work, the DODAC:MO vesicles were for the first time functionalized with polyethylene glycol and PEG-folate conjugates to achieve both maximal stability in biological fluids and increase selectivity toward folate receptor α expressing cells. The produced DODAC:MO:PEG liposomes were highly effective in RNA complexation (close to 100%), and the resulting lipoplexes also demonstrated high stability in conditions simulating their administration by intravenous injection (physiological pH, high NaCl, heparin and fetal bovine serum concentrations). In addition, cell uptake of the PEG-folate-coated lipoplexes was significantly greater in folate receptor α positive breast cancer cells (39% for 25 µg/mL of lipid and 31% for 40 µg/mL) when compared with folate receptor α negative cells (31% for 25 µg/mL of lipid and 23% for 40 µg/mL) and to systems without PEG-folate (≈13% to 16% for all tested conditions), supporting their selectivity towards the receptor. Overall, the results support these systems as appealing vectors for selective delivery of siRNA to cancer cells by folate receptor α-mediated internalization, aiming at future therapeutic applications of interest.


Asunto(s)
Neoplasias de la Mama/terapia , Portadores de Fármacos/química , Receptor 1 de Folato/metabolismo , Técnicas de Transferencia de Gen , Glicéridos/química , Nanoestructuras/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Liposomas , Ratones , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...