Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Bioorg Chem ; 147: 107378, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643562

Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3ß (GSK-3ß) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3ß and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3ß and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3ß and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3ß and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.


Alzheimer Disease , Glycogen Synthase Kinase 3 beta , Wnt Signaling Pathway , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Wnt Signaling Pathway/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Casein Kinase Idelta/antagonists & inhibitors , Casein Kinase Idelta/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Molecular Structure , Animals , Structure-Activity Relationship
2.
J Biochem Mol Toxicol ; 37(5): e23321, 2023 May.
Article En | MEDLINE | ID: mdl-36808794

Vascular endothelial growth factor receptor-2 (VEGFR-2) is crucial in promoting tumor angiogenesis and cancer metastasis. Thus, inhibition of VEGFR-2 has appeared as a good tactic for cancer treatment. To find out novel VEGFR-2 inhibitors, first, the PDB structure of VEGFR-2, 6GQO, was selected based on atomic nonlocal environment assessment (ANOLEA) and PROCHECK assessment. 6GQO was then further used for structure-based virtual screening (SBVS) of different molecular databases, including US-FDA approved drugs, US-FDA withdrawn drugs, may bridge, MDPI, and Specs databases using Glide. Based on SBVS, receptor fit, drug-like filters, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of 427877 compounds, the best 22 hits were selected. From the 22 hits, hit 5 complex with 6GQO was put through molecular mechanics/generalized born surface area (MM/GBSA) study and hERG binding. The MM/GBSA study revealed that hit 5 possesses lesser binding free energy with more inferior stability in the receptor pocket than the reference compound. The VEGFR-2 inhibition assay of hit 5 disclosed an IC50 of 165.23 nM against VEGFR-2, which can be possibly enhanced through structural modifications.


Protein Kinase Inhibitors , Vascular Endothelial Growth Factor Receptor-2 , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Neoplasms/drug therapy
3.
Chem Biol Drug Des ; 100(3): 389-418, 2022 09.
Article En | MEDLINE | ID: mdl-35712793

The quinoline scaffolds are privileged for their numerous biological activities in the pharmaceutical field. This moiety constitutes a well-known space in several marketed preparations. The quinoline scaffolds gained attention in modern days being an important chemical moiety in the identification, designing, and synthesis of novel potent derivatives. The current review is developed to shine the light on critical and significant insights on the quinoline derivatives possessing diverse biological activities such as analgesic, anti-inflammatory, antialzheimer, anti-convulsant, anti-oxidant, antimicrobial, anti-cancer activities and so on. A detailed summary of quinoline ring from its origin to the recent advancements regarding its synthesis, green chemistry approaches, patented methods, and its marketed drugs is presented in the review. We attempted to review the literature compiling the critical information that has potential to encourage fellow researchers and scientists for the design and development of quinoline scaffold based active molecules that have improved therapeutic performance along with profound pharmacological properties.


Pharmaceutical Preparations , Quinolines , Analgesics/chemistry , Anti-Infective Agents/chemistry , Pharmaceutical Preparations/chemistry , Quinolines/chemistry , Antineoplastic Agents/chemistry
4.
Biomolecules ; 11(8)2021 07 31.
Article En | MEDLINE | ID: mdl-34439796

Cancer, a fatal disease, is also one of the main causes of death worldwide. Despite various developments to prevent and treat cancer, the side effects of anticancer drugs remain a major concern. Ascorbic acid is an essential vitamin required by our bodies for normal physiological function and also has antioxidant and anticancer activity. Although the body cannot synthesize ascorbic acid, it is abundant in nature through foods and other natural sources and also exists as a nutritional food supplement. In anticancer drug development, ascorbic acid has played an important role by inhibiting the development of cancer through various mechanisms, including scavenging reactive oxygen species (ROS), selectively producing ROS and encouraging their cytotoxicity against tumour cells, preventing glucose metabolism, serving as an epigenetic regulator, and regulating the expression of HIF in tumour cells. Several ascorbic acid analogues have been produced to date for their anticancer and antioxidant activity. The current review summarizes the mechanisms behind ascorbic acid's antitumor activity, presents a compilation of its derivatives and their biological activity as anticancer agents, and discusses delivery systems such as liposomes, nanoparticles against cancer, and patents on ascorbic acid as anticancer agents.


Antineoplastic Agents/therapeutic use , Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , Dietary Supplements , Gene Expression Regulation, Neoplastic , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Ascorbic Acid/analogs & derivatives , Ascorbic Acid/metabolism , Biotransformation , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Epigenesis, Genetic , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liposomes/administration & dosage , Liposomes/chemistry , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Patents as Topic , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism
...