Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 14(39): 14711-14716, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36169284

RESUMEN

The spatiotemporal regulation of chemical reactivity in biological systems permits a network of metabolic reactions to take place within the same cellular environment. The exquisite control of reactivity is often mediated by out-of-equilibrium structures that remain functional only as long as fuel is present to maintain the higher energy, active state. An important goal in supramolecular chemistry aims to develop functional, energy dissipating systems that approach the sophistication of biological machinery. The challenge is to create strategies that couple the energy consumption needed to promote a molecule to a higher energy, assembled state to a functional property such as catalytic activity. In this work, we demonstrated that the assembly of a spiropyran (SP) dipeptide (1) transiently promoted the proline-catalyzed aldol reaction in water when visible light was present as fuel. The transient catalytic activity emerged from 1 under light illumination due to the photoisomerization of the monomeric, O-protonated (1-MCH+) merocyanine form to the spiropyran (1-SP) state, which rapidly assembled into nanosheets capable of catalyzing the aldol reaction in water. When the light source was removed, thermal isomerization to the more stable MCH+ form caused the nanosheets to dissociate into a catalytically inactive, monomeric state. Under these conditions, the aldol reaction could be repeatedly activated and deactivated by switching the light source on and off.


Asunto(s)
Dipéptidos , Prolina , Aldehídos , Benzopiranos , Catálisis , Dipéptidos/química , Indoles , Nitrocompuestos , Prolina/química , Agua/química
2.
Org Biomol Chem ; 20(26): 5254-5258, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35734894

RESUMEN

Nano-formulated, combinatory therapeutics that control the spatiotemporal aspects of drug release have potential to overcome many of the challenges faced in cancer therapy. Herein, we describe a peptide nanotube functionalized with two anticancer drugs, 5-fluoruracil (5-FU) and camptothecin (CPT). The nanotube was formed via peptide self-assembly, which positioned 5-FU on the surface at the aqueous interface; whereas, CPT was sequestered within the hydrophobic walls. Thus, two different release profiles were observed: rapid release of 5-FU, followed by slower, sustained production of CPT. This profile emerged from the rapid hydrolytic cleavage of 5-FU at the aqueous/nanotube interface, which produced a smaller nanotube comprised of the peptide fragment.


Asunto(s)
Antineoplásicos , Camptotecina , Antineoplásicos/química , Camptotecina/química , Dipéptidos , Liberación de Fármacos , Fluorouracilo
3.
Chem Commun (Camb) ; 57(100): 13776-13779, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34860221

RESUMEN

Light energy provides an attractive fuel source for energy dissipating systems because of the lack of waste production, wavelength tunability and the potential for spatial and temporal resolution. In this work, we describe a peptide-spiropyran conjugate that assembled into a transient nanofiber hydrogel in the presence of visible light, and dissociated when the light source was removed.


Asunto(s)
Hidrogeles/química , Péptidos/química , Benzopiranos/química , Benzopiranos/efectos de la radiación , Hidrogeles/síntesis química , Hidrogeles/efectos de la radiación , Luz , Nanofibras/química , Nanofibras/efectos de la radiación , Péptidos/efectos de la radiación , Compuestos de Espiro/química , Compuestos de Espiro/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...