Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Ophthalmic Res ; 66(1): 1254-1265, 2023.
Article En | MEDLINE | ID: mdl-37722372

INTRODUCTION: The purpose of this work was to evaluate the in vitro growth capacity and functionality of human corneal endothelial cells (hCEC) expanded from corneas of elderly (>60 years) donors that were preserved using an organotypic culture method (>15 days, 31°C) and did not meet the clinical criteria for keratoplasty. METHODS: Cell cultures were obtained from prior descemetorhexis (≥10 mm) and a controlled incubation with collagenase type I followed by recombinant trypsin. Cells were seeded on coated plates (fibronectin-albumin-collagen I) and cultures were expanded using the dual supplemented medium approach (maintenance medium and growth medium), in the presence of a 10 µm Rho-associated protein kinase inhibitor (Y-27632). Cell passages were obtained at culture confluency (∼2 weeks). A quantitative colorimetric WST-1 cell growth assay was performed at different time points of the culture. Morphometric analysis (area assessment and circularity), immunocytochemistry (ZO-1, Na+/K+-ATPase α, Ki67), and transendothelial electrical resistance (TEER) were performed on confluent monolayers. RESULTS: There was no difference between the cell growth profiles of hCEC cultures obtained from corneas older than 60 years, whether preserved cold or cultivated organotypic corneas. Primary cultures were able to maintain a certain cell circularity index (around 0.8) and morphology (hexagonal) similar to corneal endothelial mosaic. The ZO-1 and Na+/K+-ATPase pump markers were highly positive in confluent cell monolayers at 21 days after isolation (passage 0; P0), but significantly decreased in confluent monolayers after the first passage (P1). A weak expression of Ki67 was observed in both P0 and P1 monolayers. The P0 monolayers showed a progressive increase in TEER values between days 6 and 11 and remained stable until day 18 of culture, indicating a state of controlled permeability in monolayers. The P1 monolayers also showed some functional ability but with decreased TEER values compared to monolayers at P0. CONCLUSIONS: Our results indicate that it is possible to obtain functional hCEC cultures in eye banks, using simplified and standardized protocols, from older donor corneas (>60 years of age), previously preserved under organotypic culture conditions. This tissue is more readily available in our setting, due to the profile of the donor population or due to the low endothelial count (<2,000 cells/mm2) of the donated cornea.


Corneal Transplantation , Endothelial Cells , Humans , Aged , Ki-67 Antigen/metabolism , Cells, Cultured , Cornea , Endothelium, Corneal , Adenosine Triphosphatases/metabolism , Cell Count
2.
Pigment Cell Melanoma Res ; 31(1): 39-50, 2018 01.
Article En | MEDLINE | ID: mdl-28950052

The melanocortin 1 receptor (MC1R) is a highly polymorphic gene. The loss-of-function MC1R variants ("R") have been strongly associated with red hair color phenotype and an increased melanoma risk. We sequenced the MC1R gene in 175 healthy individuals to assess the influence of MC1R on nevus phenotype. We identified that MC1R variant carriers had larger nevi both on the back [p-value = .016, adjusted for multiple parameters (adj. p-value)] and on the upper limbs (adj. p-value = .007). Specifically, we identified a positive association between the "R" MC1R variants and visible vessels in nevi [p-value = .033, corrected using the FDR method for multiple comparisons (corrected p-value)], dots and globules in nevi (corrected p-value = .033), nevi with eccentric hyperpigmentation (corrected p-value = .033), a high degree of freckling (adj. p-value = .019), and an associative trend with presence of blue nevi (corrected p-value = .120). In conclusion, the MC1R gene appears to influence the nevus phenotype.


Dermoscopy , Melanoma/pathology , Nevus/pathology , Polymorphism, Genetic , Receptor, Melanocortin, Type 1/genetics , Skin Neoplasms/pathology , Adolescent , Child , Child, Preschool , Cross-Sectional Studies , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Melanoma/genetics , Nevus/genetics , Phenotype , Skin Neoplasms/genetics
3.
Int J Cancer ; 140(8): 1845-1849, 2017 04 15.
Article En | MEDLINE | ID: mdl-28103633

Inherited genetic factors may modulate clinical outcome in melanoma. Some low-to-medium risk genes in melanoma susceptibility play a role in melanoma outcome. Our aim was to assess the role of the functional IRF4 SNP rs12203592 in melanoma prognosis in two independent sets (Barcelona, N = 493 and Essen, N = 438). Genotype association analyses showed that the IRF4 rs12203592 T allele increased the risk of dying from melanoma in both sets (Barcelona: odds ratio [OR] = 6.53, 95% CI 1.38-30.87, Adj p = 0.032; Essen: OR = 1.68, 95% CI 1.04-2.72, Adj p = 0.035). Survival analyses only showed significance for the Barcelona set (hazard ratio = 4.58, 95% CI 1.11-18.92, Adj p = 0.036). This SNP was also associated with tumour localization, increasing the risk of developing melanoma in head or neck (OR = 1.79, 95% CI 1.07-2.98, Adj p = 0.032) and protecting from developing melanoma in the trunk (OR = 0.59, 95% CI 0.41-0.85, Adj p = 0.004). These findings suggest for the first time that IRF4 rs12203592 plays a role in the modulation of melanoma outcome and confirms its contribution to the localization of the primary tumour.


Genetic Association Studies , Genetic Predisposition to Disease , Interferon Regulatory Factors/genetics , Melanoma/genetics , Adult , Aged , Alleles , Female , Genotype , Humans , Kaplan-Meier Estimate , Male , Melanoma/pathology , Middle Aged , Neoplasm Staging , Polymorphism, Single Nucleotide , Risk Factors
...