Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Sci Rep ; 13(1): 21595, 2023 12 07.
Article En | MEDLINE | ID: mdl-38062040

Omega-3 polyunsaturated fatty acids (n-3 PUFA), such as the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are reported to beneficially affect the intestinal immunity. The biological pathways modulated by n-3 PUFA during an infection, at the level of intestinal epithelial barrier remain elusive. To address this gap, we investigated the proteomic changes induced by n-3 PUFA in porcine enterocyte cell line (IPEC-J2), in the presence and absence of lipopolysaccharide (LPS) stress conditions using shotgun proteomics analysis integrated with RNA-sequencing technology. A total of 33, 85, and 88 differentially abundant proteins (DAPs) were identified in cells exposed to n-3 PUFA (DHA:EPA), LPS, and n-3 PUFA treatment followed by LPS stimulation, respectively. Functional annotation and pathway analysis of DAPs revealed the modulation of central carbon metabolism, including the glycolysis/gluconeogenesis, pentose phosphate pathway, and oxidative phosphorylation processes. Specifically, LPS caused metabolic dysregulation in enterocytes, which was abated upon prior treatment with n-3 PUFA. Besides, n-3 PUFA supplementation facilitated enterocyte development and lipid homeostasis. Altogether, this work for the first time comprehensively described the biological pathways regulated by n-3 PUFA in enterocytes, particularly during endotoxin-stimulated metabolic dysregulation. Additionally, this study may provide nutritional biomarkers in monitoring the intestinal health of human and animals on n-3 PUFA-based diets.


Fatty Acids, Omega-3 , Humans , Animals , Swine , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Enterocytes/metabolism , Endotoxins , Lipopolysaccharides/pharmacology , Proteomics , Eicosapentaenoic Acid/metabolism , Docosahexaenoic Acids/metabolism , Fatty Acids/metabolism
2.
Foods ; 12(3)2023 Feb 01.
Article En | MEDLINE | ID: mdl-36766131

The growth of the world population has prompted research to investigate new food/feed alternatives. Hemp-based products can be considered excellent candidates. Hemp (Cannabis sativa L.) is an environmentally sustainable plant widespread worldwide. Following the reintroduction of its cultivation, hemp is attracting interest, especially in the food/feed industry. To date, scientific research has mainly focused on its nutritional aspect. Therefore, the aim of the work was also to investigate the functional profile (total phenolic content (TPC) and antioxidant activity (Ferric- reducing antioxidant power (FRAP) and 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)) of hemp-based products (hempseeds (HSs), flowers, and HS protein extract), following methanol extraction and in vitro digestion, to study the behaviour of the molecules involved. The results show an interesting nutritional value, even when compared to matrices used in the food/feed industry, such as soy and flaxseeds. The functional profile revealed a very interesting TPC following methanol extraction for HSs, flowers, and HS protein extract, respectively, (550.3 ± 28.27; 2982.8 ± 167.78; and 568.9 ± 34.18 mg Tannic Acid Equivalent (TAE)/100 g). This trend was also confirmed for FRAP (50.9 ± 4.30; 123.6 ± 8.08; and 29.73 ± 1.32 mg Ascorbic Acid Equivalent (AAE)/100 g), recording values similar/higher than soy protein extract and flaxseeds (17.4 ± 1.55; and 10.4 ± 0.44 mg AAE/100 g). The results were also maintained following physiological digestion. These results, although promising, need further investigation, confirming what has been observed with different antioxidant activity assays and identifying individual molecules involved in functional pathways. This information will be necessary to gain a better understanding of the functional characteristics of these matrices for use in food/feed formulations.

3.
Foods ; 11(13)2022 Jul 05.
Article En | MEDLINE | ID: mdl-35804798

Short chain fatty acids (SCFAs), especially butyrate (BUT), are known to promote intestinal health, but their role in the protection of intestinal barrier integrity is poorly characterized. The aim of the study was to set up an in vitro model of human colon epithelium using HT29-MTX-E12 cells to delineate the potential role of SCFAs under stress conditions. Accordingly, the HT29-MTX-E12 cells were differentiated for 42 days and subsequently exposed to dextran sulphate sodium (DSS). Further, the effects of BUT or its mixture with acetate and propionate (SCFAs-MIX) were tested to study proliferation, epithelial integrity and mucus production. The results showed that the concentration of 10% DSS for 24 h decreased the TEER about 50% compared to the control in HT29-MTX-E12 cells. The pre-treatment on HT29-MTX-E12 cells with BUT or SCFAs-MIX at specific concentrations significantly (p < 0.05) reduced the DSS-induced damage on epithelial cell integrity and permeability. Further, the treatment with specific concentrations of BUT and SCFAs-MIX for 24 h significantly promoted ZO-1, MUC2 and MUC5AC mRNA expression (p < 0.005). The present study demonstrated the suitability of HT29-MTX-E12 cells treated with DSS as an in vitro stress model of inflammatory bowel disease, which enabled us to understand the effect of bioactive SCFAs on the intestinal barrier.

4.
J Anim Sci Biotechnol ; 13(1): 40, 2022 Apr 11.
Article En | MEDLINE | ID: mdl-35399093

The gastrointestinal tract of livestock and poultry is prone to challenge by feedborne antigens, pathogens, and other stress factors in the farm environment. Excessive physiological inflammation and oxidative stress that arises firstly disrupts the intestinal epithelial barrier followed by other components of the gastrointestinal tract. In the present review, the interrelationship between intestinal barrier inflammation and oxidative stress that contributes to the pathogenesis of inflammatory bowel disease was described. Further, the role of naturally existing immunomodulatory nutrients such as the omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes in preventing intestinal barrier inflammation was discussed. Based on the existing evidence, the possible molecular mechanism of these bioactive nutrients in the intestinal barrier was outlined for application in animal diets.

5.
Microorganisms ; 9(8)2021 Jul 26.
Article En | MEDLINE | ID: mdl-34442665

Limosilactobacillus reuteri and Lactiplantibacillus plantarum strains, previously isolated from weaned piglets, were considered for the evaluation of their adhesive characteristics. Lactobacilli were treated with LiCl in order to remove the surface protein layer, and probiotic activity was compared with those of untreated strains. The autoaggregation, co-aggregation to E. coli F18+, and adhesive abilities of LiCl-treated Limosilactobacillus reuteri and Lactiplantibacillus plantarum were significantly inhibited (p < 0.05) compared with the respective untreated strain. The hydrophobic and basic phenotypes were observed due to the strong affinity to chloroform and low adherence to ethyl acetate. In particular, L. plantarum showed higher hydrophobicity compared to L. reuteri, which may reflect their different colonizing ability. After treatment with LiCl to remove surface proteins, the adherence capabilities of L. reuteri and L. casei on IPEC-J2 cells decreased significantly (p < 0.001) and L. reuteri adhered more frequently. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that both L. reuteri and L. plantarum had several bands ranging from 20 to 100 kDa. Two-dimensional gel electrophoresis showed an acidic profile of the surface-layer polypeptides for both bacterial strains, and more studies are needed to characterize their profile and functions. The results confirm the pivotal role of surface proteins in the probiotic potential of L. reuteri and L. plantarum.

6.
Animals (Basel) ; 10(6)2020 May 31.
Article En | MEDLINE | ID: mdl-32486441

Marine and plant-based omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are widely added to animal diets to promote growth and immunity. We tested the hypothesis that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and their 1:2 combination could counteract acute or long-term damage of lipopolysaccharides (LPS), dextran sodium sulphate (DSS) and hydrogen peroxide (H2O2) in Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2). The results showed that 24 h treatment with EPA or DHA exhibited proliferative effects in IPEC-J2 cells at low to moderate concentrations (6.25-50 µM) (p < 0.05). Further, 24 h pretreatment with individual DHA (3.3 µM), EPA (6.7 µM) or as DHA:EPA (1:2; 10 µM) combination increased the mitochondrial activity or cell membrane integrity post-LPS (24 h), DSS (24 h) and H2O2 (1 h) challenge (p < 0.05). Additionally, DHA:EPA (1:2, 10 µM) combination decreased the apoptotic caspase-3/7 activity around twofold after 24 h LPS and DSS challenge (p < 0.05). Our study confirms the proliferative and cytoprotective properties of EPA and DHA in IPEC-J2 cells. Increased intracellular mitochondrial activity and cell membrane integrity by ω-3 PUFAs can play a role in preventing enterocyte apoptosis during acute or chronic inflammatory and oxidative stress.

7.
Animals (Basel) ; 10(5)2020 Apr 30.
Article En | MEDLINE | ID: mdl-32366030

Phytobiotics are usually tested in feed and throughout the production cycle. However, it could be beneficial to evaluate their effects when administered only during critical moments, such as changes in feeding phases. The aim of the trial was to investigate the effect of a commercial plant extract (PE; IQV-10-P01, InQpharm Animal Health, Kuala Lumpur, Malaysia) on growth performance, blood antiradical activity and cecal microbiome when administered in drinking water to broiler chickens during the post-hatching phase and at each change of diet. In the experiment, 480 1-day-old male broiler chicks were assigned to two groups in a 50-day trial. Broilers received drinking water (C) or drinking water plus PE (T) at a rate of 2 mL/L on days 0 to 4, 10-11 and 20-21. PE did not affect performance and water intake, while total antiradical activity was improved (p < 0.05). A greater abundance of lactic acid bacteria (false discovery rate (FDR) < 0.05) was found in the T group and the result was confirmed at a lower taxonomic level with higher Lactobacillaceae abundance (FDR < 0.05). Our findings suggest that PE administration during critical moments of the production cycle of broiler chickens may exert beneficial effects at a systemic level and on gut microbial ecology.

8.
Animals (Basel) ; 10(2)2020 Jan 23.
Article En | MEDLINE | ID: mdl-31979207

Quebracho (Qu) and chestnut (Ch) are natural sources of tannins and they are currently used in animal nutrition as feed ingredients. However, to date the bio-accessibility, antimicrobial, antioxidant, and intestinal epithelial cell stimulatory doses of Qu and Ch have not been determined. Our study investigates the antioxidant and E. coli F4+ and F18+ growth inhibitory activity of Qu, Ch, and their combinations after solubilization in water (to evaluate the already bio-accessible molecules) and after simulated gastro-intestinal digestion in vitro. The effect of an in vitro digested Ch and Qu combination was also tested on intestinal epithelial IPEC-J2 cells experimentally stressed with hydrogen peroxide (H2O2) and Dextran Sodium Sulfate (DSS). The results showed that undigested Qu and Ch alone, and in combination, exerted a valuable antioxidant capacity and E. coli F4+ and F18+ growth inhibitory activity. The concentration of 1200 µg/mL exhibited the highest E. coli growth inhibitory activity for all the samples tested. In addition, after in vitro digestion, Qu and Qu50%-Ch50% maintained E. coli growth inhibitory activity and a modest antioxidant capacity. Three hours pre-treatment with in vitro digested Qu50%-Ch50% counteracted the H2O2 and DSS experimentally-induced stress in the intestinal IPEC-J2 cells. Ch and Qu tannin extracts, particularly when combined, may exert E. coli F4+ and F18+ growth inhibitory activity and valuable antioxidant and cell viability modulation activities.

9.
J Dairy Sci ; 102(12): 10760-10771, 2019 Dec.
Article En | MEDLINE | ID: mdl-31521344

Over the past decades, several studies investigated the health-promoting functions of milk peptides. However, to date many hurdles still exist regarding the widespread use of milk-derived bioactive peptides, as they may be degraded during gastrointestinal digestion. Thus, the aim of our study was to in vitro digest intact whey protein isolate (WPI) and casein proteins (CNP), mimicking in vivo digestion, to investigate their bioactive effects and to identify the potential peptides involved. Whey protein isolate and CNP were digested using a pepsin-pancreatin protocol and ultra-filtered (3-kDa cutoff membrane). A permeate (<3 kDa) and a retentate (>3 kDa) were obtained. Soy protein was included as a control (CTR). Angiotensin-1-converting enzyme inhibitory (ACE1-I) and antioxidant activity (AOX) were assessed and compared with those observed in undigested proteins and CTR. Furthermore, the permeate was characterized by nano-liquid chromatography electrospray ionization tandem mass spectrometry (LC-nano ESI MS/MS) using a shotgun peptidomic approach, and retentate was further digested with trypsin and analyzed by MS using a shotgun proteomic approach to identify potentially bioactive peptides. Further, the effects of WPI, CNP, and CTR retentate on cell metabolic activity and on mucus production (MUC5AC and MUC2 gene expression) were assessed in intestinal goblet HT29-MTX-E12 cells. Results showed that WPI permeate induced a significant ACE1-I inhibitory effect [49.2 ± 0.64% (SEM)] compared with undigested WPI, CNP permeate, and retentate or CTR permeate (10.40 ± 1.07%). A significant increase in AOX (1.58 ± 0.04 and 1.61 ± 0.02 µmol of trolox AOX equivalents per mg of protein, respectively) upon digestion was found in WPI. Potentially bioactive peptides associated with ACE1-I and antihypertensive effects were identified in WPI permeate and CNP retentate. At specific concentrations, WPI, CNP, and CTR retentate were able to stimulate metabolic activity in HT29-MTX-E12 cells. Expression of MUC5AC was increased by CNP retentate and unaltered by WPI retentate; MUC2 expression was significantly increased by 0.33 mg/g of CNP and reduced by 1.33 mg/g of CNP. Our results confirm that milk proteins may be rich sources of bioactive compounds, with the greatest beneficial potential of CNP at the intestinal goblet cell level.


Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/metabolism , Digestion , Milk Proteins/metabolism , Mucins/genetics , Peptidyl-Dipeptidase A/metabolism , Animals , Caseins/metabolism , Chromatography, Liquid , Gene Expression , HT29 Cells , Humans , Milk/metabolism , Soybean Proteins/metabolism , Tandem Mass Spectrometry , Whey/metabolism
10.
J Dairy Sci ; 102(2): 929-942, 2019 Feb.
Article En | MEDLINE | ID: mdl-30591343

Dairy products are one of the most important sources of biologically active proteins and peptides. The health-promoting functions of these peptides are related to their primary structure, which depends on the parent protein composition. A crucial issue in this field is the demonstration of a cause-effect relationship from the ingested protein form to the bioactive form in vivo. Intervention studies represent the gold standard in nutritional research; however, attention has increasingly been focused on the development of sophisticated in vitro models of digestion to elucidate the mechanism of action of dairy nutrients in a mechanistic way and significantly reduce the number of in vivo trials. On the other hand, the epithelial intestinal barrier is the first gate that actively interacts with digestion metabolites, making the intestinal cells the first target tissue of dairy nutrients and respective metabolites. An evolution of the in vitro digestion approach in the study of dairy proteins and derived bioactive compounds is the setup of combined in vitro digestion and cell culture models taking into consideration the endpoint to measure the target organism (e.g., animal, human) and the key concepts of bioaccessibility, bioavailability, and bioactivity. This review discusses the relevance and challenges of modeling digestion and the intestinal barrier, focusing on the implications for the modeling of dairy protein digestion for bioactivity evaluation.


Dairy Products/analysis , Digestion , Intestinal Absorption/physiology , Milk Proteins/metabolism , Peptides/metabolism , Animals , Biological Availability , Humans , Models, Biological
11.
Toxins (Basel) ; 10(10)2018 10 16.
Article En | MEDLINE | ID: mdl-30332757

The aim of this study was to evaluate the potential use of an e-nose in combination with lateral flow immunoassays for rapid aflatoxin and fumonisin occurrence/co-occurrence detection in maize samples. For this purpose, 161 samples of corn have been used. Below the regulatory limits, single-contaminated, and co-contaminated samples were classified according to the detection ranges established for commercial lateral flow immunoassays (LFIAs) for mycotoxin determination. Correspondence between methods was evaluated by discriminant function analysis (DFA) procedures using IBM SPSS Statistics 22. Stepwise variable selection was done to select the e-nose sensors for classifying samples by DFA. The overall leave-out-one cross-validated percentage of samples correctly classified by the eight-variate DFA model for aflatoxin was 81%. The overall leave-out-one cross-validated percentage of samples correctly classified by the seven-variate DFA model for fumonisin was 85%. The overall leave-out-one cross-validated percentage of samples correctly classified by the nine-variate DFA model for the three classes of contamination (below the regulatory limits, single-contaminated, co-contaminated) was 65%. Therefore, even though an exhaustive evaluation will require a larger dataset to perform a validation procedure, an electronic nose (e-nose) seems to be a promising rapid/screening method to detect contamination by aflatoxin, fumonisin, or both in maize kernel stocks.


Aflatoxins/analysis , Food Contamination/analysis , Fumonisins/analysis , Zea mays , Aflatoxins/immunology , Antibodies, Immobilized/immunology , Electronic Nose , Fumonisins/immunology , Immunoassay
12.
Cell Biol Toxicol ; 32(3): 249-58, 2016 Jun.
Article En | MEDLINE | ID: mdl-27154019

This study aimed to investigate the in vitro damage induced by ochratoxin A (OTA) in BME-UV1 and MDCK epithelial cells. Both cells lines were treated with OTA (0 up to 10 µg/mL), and cell viability (MTT assay), membrane stability (lactate dehydrogenase (LDH) release assay) and apoptotic cell rate (Tunel assay) were investigated. Further, the effect of the incubation with OTA has been evaluated at DNA level by the determination of DNA integrity, by the quantification of DNA adduct formation (8-hydroxy-2'-deoxyguanosine (8-OHdG)) and by the assessment of the global DNA methylation status (5-methyl-cytosine (5-mC)). The obtained results showed that after 24 h of OTA treatment, BME-UV1 cell viability was reduced in a dose-dependent way. OTA significantly (P < 0.05) increased LDH release in BME-UV1 cells at all concentrations tested. OTA (1.25 µg/mL) induced 35 % LDH release in MDCK cells (P < 0.05). A significant (P < 0.05) change in percentages of apoptotic BME-UV1 (10 ± 0.86) and MDCK (25 ± 0.88) cells was calculated when the cells were co-incubated with OTA. The level of 8-OHdG adduct formation was significantly (P < 0.05) increased in BME-UV1 cells treated with 1.25 µg/mL of OTA. The results of the present study suggest that a different mechanism of action may occur in these cell lines. Graphical abstract Study results overview.


DNA Damage , DNA Methylation/drug effects , Kidney/drug effects , Mammary Glands, Animal/drug effects , Ochratoxins/toxicity , Animals , Apoptosis/drug effects , Cattle , Cell Line , Cell Survival/drug effects , Dogs , Epithelial Cells/cytology , Epithelial Cells/drug effects , Kidney/cytology , Kidney/metabolism , Madin Darby Canine Kidney Cells , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Oxidative Stress/drug effects
13.
Cell Biol Toxicol ; 31(4-5): 199-209, 2015 Oct.
Article En | MEDLINE | ID: mdl-26072051

Peptides growth factors, hormones, and short chain fatty acids (SCFAs) are constantly in contact with the human bowel when secreted by gland or ingested by food, as milk and colostrum, or, as in the case of SCFAs, produced by fermentation processes. This study considers the effect of growth factors, estradiol 17-ß, and SCFAs on the metabolic activity and proliferation of undifferentiated HT29-MTX-E12 (E12) cells. In particular, the aim of the present study was the characterization of the human intestinal cell line E12 for its suitability as an in vitro intestinal model for cell-nutrient interaction studies. The effect of insulin-like growth factors (IGF)-I, epidermal growth factors (EGF), transforming growth factor alpha (TGF-α), transforming growth factor beta (TGF-ß), estradiol 17-ß and butyrate, propionate, and acetate was assessed on metabolic activity and proliferation of E12 cells using AlamarBlue(TM) assay and PicoGreen® assay, respectively. IGF-I and estradiol 17-ß significantly (P < 0.05; P < 0.001) increased both metabolic activity and proliferation in a concentration-dependent manner, whereas TGF-α, at the concentration of 1 ng/mL, significantly (P < 0.05) reduced the metabolic activity of the cells. Further, a dose-dependent inhibition of cell metabolic activity was detected in the presence of all SCFAs tested. Butyrate showed to be the most active in the inhibition of E12 metabolic activity and its effect was enhanced by the presence of propionate and acetate. E12 cells, in undifferentiated state, showed to be a suitable in vitro model for cell-nutrient interaction studies, providing an opportunity to examine the potential role of growth factors, hormones and SCFAs in the regulation of the intestinal cell viability.


Estradiol/pharmacology , Fatty Acids, Volatile/pharmacology , Intercellular Signaling Peptides and Proteins/pharmacology , Intestines/drug effects , HT29 Cells , Humans , Intestinal Mucosa/metabolism , Intestines/cytology
14.
Res Vet Sci ; 93(2): 758-62, 2012 Oct.
Article En | MEDLINE | ID: mdl-22103977

It is well known that the plasminogen-activating (PA) system plays a key role in the bovine mammary gland during tissue remodelling. However, the modulation of the PA cascade after bacterial infections needs to be elucidated. This study examined the effects of Escherichia coli lipopolysaccharide (LPS) on cell viability, the modulation of cell-associated u-PA activity, and the regulation of u-PA and u-PA receptor (u-PAR) RNA expression using the BME-UV1 bovine mammary epithelial cell line. LPS did not affect cell viability, but induced an increase in u-PA activity, with the maximum response after 6 h of incubation. Moreover, u-PA and u-PAR mRNA expression were both up-regulated in BME-UV1 cells after 3 h of incubation with LPS. These data indicated that E. coli LPS led to an increase in u-PA activity and RNA expression of u-PA and u-PAR in BME-UV1 cells, thus strengthening the role of the PA system during pathological processes.


Epithelial Cells/drug effects , Escherichia coli/metabolism , Gene Expression Regulation/drug effects , Mammary Glands, Animal/cytology , Receptors, Urokinase Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Animals , Cattle , Cell Line , Cell Survival/drug effects , Epithelial Cells/metabolism , Female , Lipopolysaccharides/toxicity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Urokinase Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/genetics
15.
J Dairy Res ; 78(3): 365-72, 2011 Aug.
Article En | MEDLINE | ID: mdl-21774863

There is conflicting evidence in the literature as to whether up-regulation of urokinase plasminogen activator (u-PA) expression is related to bovine mammary epithelial cell growth. The role of u-PA receptor (u-PAR) and that of the plasminogen activator inhibitors type 1 and type 2 (PAI-1 and PAI-2) in bovine mammary epithelial cell proliferation is not known. The effect of growth factors and various hormones known to affect mammary function on expression of u-PA, u-PAR, PAI-1, PAI-2 and cell proliferation using the BME-UV1 bovine mammary epithelial cell line was examined. Cell proliferation was measured using the MTT assay and direct cell enumeration. Results showed that both IGF-1 and EGF increased cell proliferation but EGF was a more potent mitogen than IGF-1. Furthermore, IGF-1 increased by 2-fold expression of both u-PA and u-PAR while EGF increased by 3·8-fold the expression of only u-PAR. Both growth factors had no effect on expression of PAI-1 and PAI-2. In a manner consistent with changes in gene expression, EGF and to a lesser extent IGF-1 up-regulated total cell associated, membrane-bound and secreted u-PA activity. Thus, a strong correlation exists between u-PAR gene expression along with the activity of u-PA present on cell membranes and cell proliferation. Dexamethasone, prolactin and surprisingly insulin had no effect on cell proliferation. Dexamethasone alone and when combined with insulin or prolactin up-regulated gene expression of both PAI- and PAI-2 but not that of u-PA and u-PAR. Decreased total cell-associated, membrane-bound and secreted u-PA activity was detected in cells cultured in the presence of dexamethasone when combined with insulin or prolactin. However no such effect was observed in the presence of dexamethasone alone. Thus, dexamethasone acting synergistically with prolactin or insulin inhibits the activation of the plasmin-plasminogen system but this inhibition is not correlated with any changes in cell proliferation.


Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Mammary Glands, Animal/cytology , Plasminogen Activators/metabolism , Prolactin/pharmacology , Animals , Cattle , Cell Line , Cell Proliferation/drug effects , Epithelial Cells/cytology , Epithelial Cells/physiology , Female , Plasminogen Activators/genetics
16.
Anaerobe ; 17(3): 97-105, 2011 Jun.
Article En | MEDLINE | ID: mdl-21619939

The selection of promising specific species of lactic acid bacteria with potential probiotic characteristics is of particular interest in producing multi species-specific probiotic adjuncts in veal calves rearing. The aim of the present work was to select and evaluate in vitro the functional activity of lactic acid bacteria, Bifidobacterium longum and Bacillus coagulans strains isolated from veal calves in order to assess their potential use as multi species-specific probiotics for veal calves. For this purpose, bacterial strains isolated from faeces collected from 40 healthy 50-day-calves, were identified by RiboPrinter and 16s rRNA gene sequence. The most frequent strains belonged to the species B. longum, Streptococcus bovis, Lactobacillus animalis and Streptococcus macedonicus. Among these, 7 strains were chosen for testing their probiotic characteristics in vitro. Three strains, namely L. animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and B. coagulans SB117 showed varying individual but promising capabilities to survive in the gastrointestinal tract, to adhere, to produce antimicrobial compounds. These three selected species-specific bacteria demonstrated in vitro, both singularly and mixed, the functional properties needed for their use as potential probiotics in veal calves.


Bacillus/isolation & purification , Bifidobacterium/isolation & purification , Cattle/microbiology , Lactic Acid/biosynthesis , Lactobacillus/isolation & purification , Probiotics/isolation & purification , Analysis of Variance , Animals , Antibiosis , Bacillus/classification , Bacillus/genetics , Bacterial Adhesion , Bacterial Typing Techniques , Bifidobacterium/classification , Bifidobacterium/genetics , Cell Line , Cluster Analysis , Fatty Acids, Volatile/biosynthesis , Feces/microbiology , Humans , Intestines/microbiology , Lactobacillus/classification , Lactobacillus/genetics , Microbial Sensitivity Tests , Microbial Viability , Probiotics/chemistry , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Species Specificity
17.
Vet Res Commun ; 34(3): 267-76, 2010 Mar.
Article En | MEDLINE | ID: mdl-20349360

Lactoferrin (Lf) is a non-haem iron-binding glycoprotein with a molecular weight of about 80 kDa, synthesized by glandular epithelial cells and stored in the secondary granules of neutrophils. The physiological significance of Lf is related to non-specific immune defence against pathogens, immunomodulatory activity, iron homeostasis, antioxidant properties and regulation of cell growth. Lf is a bioactive component of the mammary secretions and its modulatory and defensive functions do affect the newborn and the mammary gland as well. In this work a bovine mammary epithelial cell line (BME-UV1) was used as an in vitro model of the bovine mammary epithelium to examine the protective role of exogenous bovine Lf (bLf) against the cytotoxic damage induced by bacterial lipopolysaccharides (LPS) and the endogenous bLf mRNA expression after LPS exposure. In the in vitro model used, exogenous bLf exerts a protective effect against endotoxin cytotoxicity, which could be mediated by the LPS-neutralizing capability of bLf. In addition, in BME-UV1 cells the response to LPS exposure does not involve bLf mRNA expression, suggesting that this cell line lack of functional LPS-responsive elements.


Epithelial Cells/drug effects , Epithelial Cells/metabolism , Lactoferrin/metabolism , Lipopolysaccharides/pharmacology , Mammary Glands, Animal/cytology , Animals , Cattle , Cell Line , Female , Gene Expression Regulation/drug effects , Inhibitory Concentration 50 , Lactoferrin/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Toxins (Basel) ; 2(6): 1265-78, 2010 06.
Article En | MEDLINE | ID: mdl-22069637

The aims of the current study were to determine the half-lethal concentration of ochratoxin A (OTA) as well as the levels of lactate dehydrogenase release and DNA fragmentation induced by OTA in primary porcine fibroblasts, and to examine the role of α-tocopherol in counteracting its toxicity. Cells showed a dose-, time- and origin-dependent (ear vs. embryo) sensitivity to ochratoxin A. Pre-incubation for 3 h with 1 nM α-tocopherol significantly (P < 0.01) reduced OTA cytotoxicity, lactate dehydrogenase release and DNA damage in both fibroblast cultures. These findings indicate that α-tocopherol supplementation may counteract short-term OTA toxicity, supporting its defensive role in the cell membrane.


Antioxidants/pharmacology , Fibroblasts/drug effects , Ochratoxins/toxicity , alpha-Tocopherol/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured , DNA Damage , Fibroblasts/metabolism , L-Lactate Dehydrogenase/metabolism , Lethal Dose 50 , Swine
19.
Vet Res Commun ; 33(8): 991-1001, 2009 Dec.
Article En | MEDLINE | ID: mdl-19763863

An investigation was carried out into the recovery from calf faeces of Bacillus coagulans spores added to the feed as probiotic. For this purpose, Bacillus coagulans spores (9 log10 CFU g⁻¹) were given daily to 10 calves during the whole farming periods; another 10 calves acted as controls. Throughout the trial the faecal spore counts were significantly (P < 0.01) higher in the treated group than in the controls (averaging 2.1 x 105 vs 3.7 x 104 CFU g⁻¹). Bacterial cells were recovered from faecal samples and ribotyping matched the strain isolated from faecal sample to the clone administered to the animals. In addition, the recovered cells were found to maintain their functionality aspects of acid production, survival in artificial gastric juice and in the presence of bile, and attachment to human intestinal epithelial cells. The results further elucidate the fate of spore formers administered to calves, and this will help in the development of new species-specific nutritional strategies.


Bacillus/physiology , Cattle/microbiology , Feces/microbiology , Spores, Bacterial/physiology , Animal Nutritional Physiological Phenomena , Animals , Bacillus/isolation & purification , Cattle/physiology , Probiotics/administration & dosage , Probiotics/pharmacokinetics , Ribotyping/veterinary
20.
J Dairy Res ; 74(3): 374-80, 2007 Aug.
Article En | MEDLINE | ID: mdl-17692138

alpha1-Acid glycoprotein (AGP) is a lipocalin that is produced mainly by the liver and secreted into plasma in response to infections and injuries. In this study, we evaluated AGP isoforms that can be detected in bovine milk. We found that milk-AGP content is made up of at least two isoform groups, a low MW group (44 kDa) that is produced in the mammary gland (MG-AGP), and a higher MW group (55-70 kDa), that is produced by somatic cells (SC-AGP). Identical SC-AGP isoforms can be found both in milk and blood PMN cells. Analysis of the mammary tissue cDNA showed that the sequence of the MG-AGP isoform is identical to that of plasma AGP. Each group contains several proteins with different MWs and different isoelectric points, as shown by 2D-electrophoresis. The glycosylation patterns of these isoforms were analysed by means of specific lectin binding, to evaluate the degree of sialylation, fucosylation and branching. The MG-AGP glycan pattern was identical to plasma AGP produced by the liver. Several differences were detected, however, between plasma and SC-AGP isoforms, the most evident being the strong degree of fucosylation and the elevated number of di-antennary glycans in SC-AGP. Immunohistochemistry showed that AGP is found in all tissues that make up the mammary gland, but that it is most likely produced for the main part by the alveoli.


Blood Proteins/genetics , Glycoproteins/genetics , Milk/chemistry , Animals , Blood Proteins/analysis , Blood Proteins/metabolism , Cattle , Female , Gene Expression Regulation , Glycoproteins/analysis , Glycoproteins/metabolism , Mammary Glands, Animal/metabolism , Molecular Sequence Data , Protein Isoforms , Protein Processing, Post-Translational
...