Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
1.
Autophagy ; 19(3): 1036-1038, 2023 03.
Article En | MEDLINE | ID: mdl-36063487

Normal cells secrete small extracellular vesicles (sEV), containing exosomes and/or ectosomes, which play a beneficial role in monitoring tissue integrity and immune response, whereas cancer cells constitutively secrete sEV, which contribute to inhibit the immune defenses and promote tumor progression and aggressiveness. Therefore, there is a great interest in reprograming tumor sEV functions toward normal ones. We hypothesized that this could be realized by inducing tumor cell re-differentiation with dendrogenin A (DDA), an endogenous oxysterol and a ligand of NR1 H/LXR (nuclear receptor subfamily 1 group H). At low doses, DDA induces tumor cell differentiation, tumor growth inhibition and immune cell infiltration into tumors. At high doses, DDA induces lethal macroautophagy/autophagy in tumors by increasing LC3 expression at the mRNA and protein level, through NR1H2/LXRß. In the present study, we showed that low doses of DDA re-differentiate tumor cells by interacting with NR1H2. This results in an increased formation of multivesicular bodies (MVB) in tumor cells and an enhanced secretion of LC3-II-associated exosome-enriched sEV, with immune and anticancer properties. This study highlights the original LC3-II-associated exosome secretory pathway driven by the DDA-NR1H2 complex and paves the way to the development of new therapeutic strategies against pro-tumor exosomes.


Exosomes , Neoplasms , Humans , Liver X Receptors/metabolism , Exosomes/metabolism , Secretory Pathway , Autophagy , Neoplasms/metabolism
2.
J Extracell Vesicles ; 11(4): e12211, 2022 04.
Article En | MEDLINE | ID: mdl-35411723

Tumour cells are characterized by having lost their differentiation state. They constitutively secrete small extracellular vesicles (sEV) called exosomes when they come from late endosomes. Dendrogenin A (DDA) is an endogenous tumour suppressor cholesterol-derived metabolite. It is a new class of ligand of the nuclear Liver X receptors (LXR) which regulate cholesterol homeostasis and immunity. We hypothesized that DDA, which induces tumour cell differentiation, inhibition of tumour growth and immune cell infiltration into tumours, could functionally modify sEV secreted by tumour cells. Here, we have shown that DDA differentiates tumour cells by acting on the LXRß. This results in an increased production of sEV (DDA-sEV) which includes exosomes. The DDA-sEV secreted from DDA-treated cells were characterized for their content and activity in comparison to sEV secreted from control cells (C-sEV). DDA-sEV were enriched, relatively to C-sEV, in several proteins and lipids such as differentiation antigens, "eat-me" signals, lipidated LC3 and the endosomal phospholipid bis(monoacylglycero)phosphate, which stimulates dendritic cell maturation and a Th1 T lymphocyte polarization. Moreover, DDA-sEV inhibited the growth of tumours implanted into immunocompetent mice compared to control conditions. This study reveals a pharmacological control through a nuclear receptor of exosome-enriched tumour sEV secretion, composition and immune function. Targeting the LXR may be a novel way to reprogram tumour cells and sEV to stimulate immunity against cancer.


Exosomes , Neoplasms , Animals , Cholestanols , Cholesterol/metabolism , Exosomes/metabolism , Imidazoles , Liver X Receptors/metabolism , Mice , Neoplasms/drug therapy
3.
Cancer Immunol Res ; 9(5): 568-582, 2021 05.
Article En | MEDLINE | ID: mdl-33727246

Dysregulation of lipid metabolism affects the behavior of cancer cells, but how this happens is not completely understood. Neutral sphingomyelinase 2 (nSMase2), encoded by SMPD3, catalyzes the breakdown of sphingomyelin to produce the anti-oncometabolite ceramide. We found that this enzyme was often downregulated in human metastatic melanoma, likely contributing to immune escape. Overexpression of nSMase2 in mouse melanoma reduced tumor growth in syngeneic wild-type but not CD8-deficient mice. In wild-type mice, nSMase2-overexpressing tumors showed accumulation of both ceramide and CD8+ tumor-infiltrating lymphocytes, and this was associated with increased level of transcripts encoding IFNγ and CXCL9. Overexpressing the catalytically inactive nSMase2 failed to alter tumor growth, indicating that the deleterious effect nSMase2 has on melanoma growth depends on its enzymatic activity. In vitro, small extracellular vesicles from melanoma cells overexpressing wild-type nSMase2 augmented the expression of IL12, CXCL9, and CCL19 by bone marrow-derived dendritic cells, suggesting that melanoma nSMase2 triggers T helper 1 (Th1) polarization in the earliest stages of the immune response. Most importantly, overexpression of wild-type nSMase2 increased anti-PD-1 efficacy in murine models of melanoma and breast cancer, and this was associated with an enhanced Th1 response. Therefore, increasing SMPD3 expression in melanoma may serve as an original therapeutic strategy to potentiate Th1 polarization and CD8+ T-cell-dependent immune responses and overcome resistance to anti-PD-1.


CD8-Positive T-Lymphocytes/immunology , Melanoma/immunology , Melanoma/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Immunity , Immunotherapy , Melanoma/drug therapy , Melanoma/pathology , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/genetics , Th1 Cells/immunology
5.
Cancers (Basel) ; 12(7)2020 Jun 29.
Article En | MEDLINE | ID: mdl-32610562

Dendrogenin A (DDA) is a mammalian cholesterol metabolite that displays potent antitumor properties on acute myeloid leukemia (AML). DDA triggers lethal autophagy in cancer cells through a biased activation of the oxysterol receptor LXRß, and the inhibition of a sterol isomerase. We hypothesize that DDA could potentiate the activity of an anticancer drug acting through a different molecular mechanism, and conducted in vitro and in vivo combination tests on AML cell lines and patient primary tumors. We report here results from tests combining DDA with antimetabolite cytarabine (Ara-C), one of the main drugs used for AML treatment worldwide. We demonstrated that DDA potentiated and sensitized AML cells, including primary patient samples, to Ara-C in vitro and in vivo. Mechanistic studies revealed that this sensitization was LXRß-dependent and was due to the activation of lethal autophagy. This study demonstrates a positive in vitro and in vivo interaction between DDA and Ara-C, and supports the clinical evaluation of DDA in combination with Ara-C for the treatment of AML.

6.
Biochimie ; 179: 237-246, 2020 Dec.
Article En | MEDLINE | ID: mdl-32485205

The anti-malarial drug Chloroquine (CQ) and its derivative hydroxychloroquine have shown antiviral activities in vitro against many viruses, including coronaviruses, dengue virus and the biosafety level 4 Nipah and Hendra paramyxoviruses. The in vivo efficacy of CQ in the treatment of COVID-19 is currently a matter of debate. CQ is a lysosomotrophic compound that accumulates in lysosomes, as well as in food vacuoles of Plasmodium falciparum. In the treatment of malaria, CQ impairs the digestion and growth of the parasite by increasing the pH of the food vacuole. Similarly, it is assumed that the antiviral effects of CQ results from the increase of lysosome pH and the inhibition of acidic proteases involved in the maturation of virus fusion protein. CQ has however other effects, among which phospholipidosis, characterized by the accumulation of multivesicular bodies within the cell. The increase in phospholipid species particularly concerns bis(monoacylglycero)phosphate (BMP), a specific lipid of late endosomes involved in vesicular trafficking and pH-dependent vesicle budding. It was shown previously that drugs like progesterone, the cationic amphiphile U18666A and the phospholipase inhibitor methyl arachidonyl fluoro phosphonate (MAFP) induce the accumulation of BMP in THP-1 cells and decrease cell infection by human immunodeficiency virus. HIV viral particles were found to be retained into large endosomal-type vesicles, preventing virus spreading. Since BMP was also reported to favour virus entry through hijacking of the endocytic pathway, we propose here that BMP could play a dual role in viral infection, with its antiviral effects triggered by lysosomotropic drugs like CQ.


Antiviral Agents/pharmacology , Chloroquine/pharmacology , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Lysophospholipids/metabolism , Monoglycerides/metabolism , SARS-CoV-2/drug effects , Humans , SARS-CoV-2/physiology
8.
J Lipid Res ; 59(8): 1316-1324, 2018 08.
Article En | MEDLINE | ID: mdl-29764923

Intercellular communication has been known for decades to involve either direct contact between cells or to operate via circulating molecules, such as cytokines, growth factors, or lipid mediators. During the last decade, we have begun to appreciate the increasing importance of intercellular communication mediated by extracellular vesicles released by viable cells either from plasma membrane shedding (microvesicles, also named microparticles) or from an intracellular compartment (exosomes). Exosomes and microvesicles circulate in all biological fluids and can trigger biological responses at a distance. Their effects include a large variety of biological processes, such as immune surveillance, modification of tumor microenvironment, or regulation of inflammation. Extracellular vesicles can carry a large array of active molecules, including lipid mediators, such as eicosanoids, proteins, and nucleic acids, able to modify the phenotype of receiving cells. This review will highlight the role of the various lipidic pathways involved in the biogenesis and functions of microvesicles and exosomes.


Extracellular Vesicles/metabolism , Lipid Metabolism , Cell-Derived Microparticles/metabolism , Exosomes/metabolism , Humans , Signal Transduction
9.
Nat Commun ; 8(1): 1903, 2017 12 04.
Article En | MEDLINE | ID: mdl-29199269

Dendrogenin A (DDA) is a newly discovered cholesterol metabolite with tumor suppressor properties. Here, we explored its efficacy and mechanism of cell death in melanoma and acute myeloid leukemia (AML). We found that DDA induced lethal autophagy in vitro and in vivo, including primary AML patient samples, independently of melanoma Braf status or AML molecular and cytogenetic classifications. DDA is a partial agonist on liver-X-receptor (LXR) increasing Nur77, Nor1, and LC3 expression leading to autolysosome formation. Moreover, DDA inhibited the cholesterol biosynthesizing enzyme 3ß-hydroxysterol-Δ8,7-isomerase (D8D7I) leading to sterol accumulation and cooperating in autophagy induction. This mechanism of death was not observed with other LXR ligands or D8D7I inhibitors establishing DDA selectivity. The potent anti-tumor activity of DDA, its original mechanism of action and its low toxicity support its clinical evaluation. More generally, this study reveals that DDA can direct control a nuclear receptor to trigger lethal autophagy in cancers.


Antineoplastic Agents/pharmacology , Autophagy/drug effects , Cholestanols/pharmacology , Imidazoles/pharmacology , Leukemia, Myeloid, Acute , Liver X Receptors/drug effects , Melanoma , Animals , Cell Death/drug effects , Cell Line, Tumor , Drug Partial Agonism , Gene Expression/drug effects , HEK293 Cells , HL-60 Cells , Humans , In Vitro Techniques , Liver X Receptors/metabolism , Melanoma, Experimental , Membrane Transport Proteins/drug effects , Membrane Transport Proteins/genetics , Mice , Microtubule-Associated Proteins/drug effects , Microtubule-Associated Proteins/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/drug effects , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
10.
Proc Natl Acad Sci U S A ; 114(44): E9346-E9355, 2017 10 31.
Article En | MEDLINE | ID: mdl-29078321

Breast cancer (BC) remains the primary cause of death from cancer among women worldwide. Cholesterol-5,6-epoxide (5,6-EC) metabolism is deregulated in BC but the molecular origin of this is unknown. Here, we have identified an oncometabolism downstream of 5,6-EC that promotes BC progression independently of estrogen receptor α expression. We show that cholesterol epoxide hydrolase (ChEH) metabolizes 5,6-EC into cholestane-3ß,5α,6ß-triol, which is transformed into the oncometabolite 6-oxo-cholestan-3ß,5α-diol (OCDO) by 11ß-hydroxysteroid-dehydrogenase-type-2 (11ßHSD2). 11ßHSD2 is known to regulate glucocorticoid metabolism by converting active cortisol into inactive cortisone. ChEH inhibition and 11ßHSD2 silencing inhibited OCDO production and tumor growth. Patient BC samples showed significant increased OCDO levels and greater ChEH and 11ßHSD2 protein expression compared with normal tissues. The analysis of several human BC mRNA databases indicated that 11ßHSD2 and ChEH overexpression correlated with a higher risk of patient death, highlighting that the biosynthetic pathway producing OCDO is of major importance to BC pathology. OCDO stimulates BC cell growth by binding to the glucocorticoid receptor (GR), the nuclear receptor of endogenous cortisol. Interestingly, high GR expression or activation correlates with poor therapeutic response or prognosis in many solid tumors, including BC. Targeting the enzymes involved in cholesterol epoxide and glucocorticoid metabolism or GR may be novel strategies to prevent and treat BC.


Breast Neoplasms/metabolism , Carcinogens/metabolism , Cholesterol/metabolism , Receptors, Glucocorticoid/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Animals , Cell Line , Cell Line, Tumor , Cholesterol/analogs & derivatives , Epoxide Hydrolases/metabolism , Estrogen Receptor alpha/metabolism , Female , HEK293 Cells , Humans , MCF-7 Cells , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , RNA, Messenger/metabolism
12.
Biochimie ; 130: 109-114, 2016 Nov.
Article En | MEDLINE | ID: mdl-27262406

Tamoxifen (Tam) was developed as a ligand and modulator of estrogen receptor α (ERα) and is one of the main drugs used globally for the hormonotherapy of breast cancers. Besides ERα, Tam also binds with high affinity to the microsomal antiestrogen binding site (AEBS). The AEBS is a hetero-oligomeric proteinaceous complex with cholesterol-5,6-epoxide hydrolase (ChEH) activity that is associated with an intracellular histamine (HA) binding site. The enzymatic activities of the ChEH subunits control developmental programs in mammals and transform cholesterol-5,6-epoxides (5,6-EC) into cholestane-3ß,5α,6ß-triol. Inhibition of the ChEH activity by pharmacological agents such as Tam induce cancer cell re-differentiation through the accumulation of 5,6-EC. A few years ago, the putative chemical reactivity of the 5,6-EC epoxide group towards nucleophiles led our group to hypothesize that 5,6-EC could react with HA that was co-localized at the AEBS to give a new molecule involved in cell differentiation. This hypothesis was chemically tested and the conjugation of 5,6α-EC: with HA was found possible but only under catalytic conditions. It gave a stereo-selective single product of transformation which was named dendrogenin A (DDA). DDA was found to display potent cancer cell differentiation and anticancer properties in vitro and in vivo, suggesting that it was a tumor suppressor metabolite. The presence of DDA was then established in several mammalian tissues, providing the first evidence of a steroidal alkaloid metabolite in mammals. The discovery of DDA highlights a new metabolic pathway in mammals which lies at the crossroads of cholesterol and histamine metabolism and produces this tumor suppressor metabolite.


Antineoplastic Agents/metabolism , Cholestanols/metabolism , Cholesterol/metabolism , Drug Discovery , Imidazoles/metabolism , Tamoxifen/metabolism , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cholestanols/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Estrogen Receptor alpha/metabolism , Female , Humans , Imidazoles/pharmacology , Tamoxifen/pharmacology
13.
PLoS One ; 9(1): e84153, 2014.
Article En | MEDLINE | ID: mdl-24392111

Exosomes are nanometer-sized microvesicles formed in multivesicular bodies (MVBs) during endosome maturation. Exosomes are released from cells into the microenvironment following fusion of MVBs with the plasma membrane. During the last decade, skeletal muscle-secreted proteins have been identified with important roles in intercellular communications. To investigate whether muscle-derived exosomes participate in this molecular dialog, we determined and compared the protein contents of the exosome-like vesicles (ELVs) released from C2C12 murine myoblasts during proliferation (ELV-MB), and after differentiation into myotubes (ELV-MT). Using a proteomic approach combined with electron microscopy, western-blot and bioinformatic analyses, we compared the protein repertoires within ELV-MB and ELV-MT. We found that these vesicles displayed the classical properties of exosomes isolated from other cell types containing components of the ESCRT machinery of the MVBs, as well as numerous tetraspanins. Specific muscle proteins were also identified confirming that ELV composition also reflects their muscle origin. Furthermore quantitative analysis revealed stage-preferred expression of 31 and 78 proteins in ELV-MB and ELV-MT respectively. We found that myotube-secreted ELVs, but not ELV-MB, reduced myoblast proliferation and induced differentiation, through, respectively, the down-regulation of Cyclin D1 and the up-regulation of myogenin. We also present evidence that proteins from ELV-MT can be incorporated into myoblasts by using the GFP protein as cargo within ELV-MT. Taken together, our data provide a useful database of proteins from C2C12-released ELVs throughout myogenesis and reveals the importance of exosome-like vesicles in skeletal muscle biology.


Exosomes/metabolism , Muscle Fibers, Skeletal/metabolism , Myoblasts/metabolism , Proteome , Proteomics , Animals , Cell Differentiation , Cell Line , Cell Proliferation , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/ultrastructure , Exosomes/ultrastructure , Mice , Myoblasts/cytology , Protein Transport , Proteomics/methods
14.
Biochim Biophys Acta ; 1841(1): 108-20, 2014 Jan.
Article En | MEDLINE | ID: mdl-24140720

Exosomes are nanovesicles that have emerged as a new intercellular communication system between an intracellular compartment of a donor cell towards the periphery or an internal compartment of a recipient cell. The bioactivity of exosomes resides not only in their protein and RNA contents but also in their lipidic molecules. Exosomes display original lipids organized in a bilayer membrane and along with the lipid carriers such as fatty acid binding proteins that they contain, exosomes transport bioactive lipids. Exosomes can vectorize lipids such as eicosanoids, fatty acids, and cholesterol, and their lipid composition can be modified by in-vitro manipulation. They also contain lipid related enzymes so that they can constitute an autonomous unit of production of various bioactive lipids. Exosomes can circulate between proximal or distal cells and their fate can be regulated in part by lipidic molecules. Compared to their parental cells, exosomes are enriched in cholesterol and sphingomyelin and their accumulation in cells might modulate recipient cell homeostasis. Exosome release from cells appears to be a general biological process. They have been reported in all biological fluids from which they can be recovered and can be monitors of specific pathophysiological situations. Thus, the lipid content of circulating exosomes could be useful biomarkers of lipid related diseases. Since the first lipid analysis of exosomes ten years ago detailed knowledge of exosomal lipids has accumulated. The role of lipids in exosome fate and bioactivity and how they constitute an additional lipid transport system are considered in this review.


Cell Communication , Cholesterol/metabolism , Eicosanoids/metabolism , Exosomes/metabolism , Lipid Bilayers/metabolism , Lipid Metabolism , Animals , Biological Transport, Active , Exosomes/pathology , Humans
15.
Biochimie ; 96: 67-74, 2014 Jan.
Article En | MEDLINE | ID: mdl-23827857

Dysregulation of lipid metabolism involves cellular communication mediated by cell contacts or exchange of bioactive lipids bound to soluble carriers or to lipoproteins. An increasing field is that of cellular communication mediated by nanovesicles called exosomes. Those vesicles are released from an internal compartment of viable cells, circulate in all biological fluids and can transfer material from cell-to-cells. Involvement of exosome trafficking in the transcellular metabolism of eicosanoids and cholesterol-related diseases including cancer is developed hereafter.


Exosomes/physiology , Hypercholesterolemia/metabolism , Lipid Metabolism , Animals , Biological Transport , Cell Communication , Cholesterol/metabolism , Humans , Lysophosphatidylcholines/metabolism
17.
Biochimie ; 95(9): 1677-88, 2013 Sep.
Article En | MEDLINE | ID: mdl-23774297

Progesterone, the cationic amphiphile U18666A and a phospholipase inhibitor (Methyl Arachidonyl Fluoro Phosphonate, MAFP) inhibited by 70%-90% HIV production in viral reservoir cells, i.e. human THP-1 monocytes and monocyte-derived macrophages (MDM). These compounds triggered an inhibition of fluid phase endocytosis (macropinocytosis) and modified cellular lipid homeostasis since endosomes accumulated filipin-stained sterols and Bis(Monoacylglycero)Phosphate (BMP). BMP was quantified using a new cytometry procedure and was increased by 1.25 times with MAFP, 1.7 times with U18666A and 2.5 times with progesterone. MAFP but not progesterone or U18666A inhibited the hydrolysis of BMP by the Pancreatic Lipase Related Protein 2 (PLRP2) as shown by in-vitro experiments. The possible role of sterol transporters in steroid-mediated BMP increase is discussed. Electron microscopy showed the accumulation of viral particles either into large intracellular viral-containing compartments or outside the cells, indicating that endosomal accumulation of BMP could block intracellular biogenesis of viral particles while inhibition of macropinocytosis would prevent viral particle uptake. This is the first report linking BMP metabolism with a natural steroid such as progesterone or with involvement of a phospholipase A1 activity. BMP cellular content could be used as a biomarker for efficient anti-viral drugs.


Endosomes/metabolism , HIV/physiology , Lysophospholipids/metabolism , Monoglycerides/metabolism , Phospholipases/antagonists & inhibitors , Progesterone/pharmacology , Virus Replication/drug effects , Androstenes/pharmacology , Arachidonic Acids/pharmacology , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Cholesterol/metabolism , Endosomes/drug effects , Endosomes/virology , Enzyme Inhibitors/pharmacology , HIV/drug effects , Humans , Lipase/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/virology , Monocytes/cytology , Organophosphonates/pharmacology , Pinocytosis/drug effects , Virion/drug effects , Virion/physiology
18.
Biochem Pharmacol ; 86(1): 175-89, 2013 Jul 01.
Article En | MEDLINE | ID: mdl-23500540

Tamoxifen (Tam) is a selective estrogen receptor modulator (SERM) that remains one of the major drugs used in the hormonotherapy of breast cancer (BC). In addition to its SERM activity, we recently showed that the oxidative metabolism of cholesterol plays a role in its anticancer pharmacology. We established that these effects were not regulated by the ER but by the microsomal antiestrogen binding site/cholesterol-5,6-epoxide hydrolase complex (AEBS/ChEH). The present study aimed to identify the oxysterols that are produced under Tam treatment and to define their mechanisms of action. Tam and PBPE (a selective AEBS/ChEH ligand) stimulated the production and the accumulation of 5,6α-epoxy-cholesterol (5,6α-EC), 5,6α-epoxy-cholesterol-3ß-sulfate (5,6-ECS), 5,6ß-epoxy-cholesterol (5,6ß-EC) in MCF-7 cells through a ROS-dependent mechanism, by inhibiting ChEH and inducing sulfation of 5,6α-EC by SULT2B1b. We showed that only 5,6α-EC was responsible for the induction of triacylglycerol (TAG) biosynthesis by Tam and PBPE, through the modulation of the oxysterol receptor LXRß. The cytotoxicity mediated by Tam and PBPE was triggered by 5,6ß-EC through an LXRß-independent route and by 5,6-ECS through an LXRß-dependent mechanism. The importance of SULT2B1b was confirmed by its ectopic expression in the SULT2B1b(-) MDA-MB-231 cells, which became sensitive to 5,6α-EC, Tam or PBPE at a comparable level to MCF-7 cells. This study established that 5,6-EC metabolites contribute to the anticancer pharmacology of Tam and highlights a novel signaling pathway that points to a rationale for re-sensitizing BC cells to Tam and AEBS/ChEH ligands.


Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Cholesterol/analogs & derivatives , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/pharmacology , Binding Sites , Breast Neoplasms/pathology , Cell Line, Tumor , Cholesterol/metabolism , Epoxide Hydrolases/metabolism , Estrogen Receptor Modulators/metabolism , Female , Humans , Ligands , Liver X Receptors , Orphan Nuclear Receptors/metabolism , Oxidation-Reduction , Pyrrolidines/pharmacology , Reactive Oxygen Species/metabolism , Sulfotransferases/metabolism , Triglycerides/biosynthesis
19.
PLoS Biol ; 10(12): e1001450, 2012.
Article En | MEDLINE | ID: mdl-23271954

Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.


Databases as Topic , Exosomes/metabolism , Extracellular Space/metabolism , Research , Apoptosis
20.
Biochim Biophys Acta ; 1821(11): 1379-85, 2012 Nov.
Article En | MEDLINE | ID: mdl-22835523

Methyl arachidonyl fluorophosphonate (MAFP) is a known inhibitor of cytosolic phospholipase A2 and some other serine enzymes. MAFP was found here to be an irreversible inhibitor of human pancreatic lipase-related protein 2 (HPLRP2), an enzyme displaying lipase, phospholipase A1 and galactolipase activities. In the presence of MAFP, mass spectrometry analysis of HPLRP2 revealed a mass increase of 351Da, suggesting a covalent binding of MAFP to the active site serine residue. When HPLRP2 was pre-incubated with MAFP before measuring residual activity, a direct inhibition of HPLRP2 occurred, confirming that HPLRP2 has an active site freely accessible to solvent and differs from most lipases in solution. HPLRP2 activities on tributyrin (TC4), phosphatidylcholine (PC) and monogalactosyl dioctanoylglycerol (C8-MGDG) were equally inhibited under these conditions. Bile salts were not required to trigger the inhibition, but they significantly increased the rate of HPLRP2 inhibition, probably because of MAFP micellar solubilization. Since HPLRP2 is active on various substrates that self-organize differently in the presence of water, HPLRP2 inhibition by MAFP was tested in the presence of these substrates after adding MAFP in the course of the lipolysis reaction. In this case, the rates of inhibition of lipase, phospholipase A1 and galactolipase activities were not equivalent (triglycerides>PC>MGDG), suggesting different enzyme/inhibitor partitioning between the aqueous phase and lipid aggregates. The inhibition by MAFP of a well identified phospholipase A1 (HPLRP2), present in pancreatic juice and also in human monocytes, indicates that MAFP cannot be used for discriminating phospholipase A2 from A1 activities at the cellular level.


Arachidonic Acids/pharmacology , Carboxylic Ester Hydrolases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Lipase/antagonists & inhibitors , Organophosphonates/pharmacology , Phospholipases A1/antagonists & inhibitors , Carboxylic Ester Hydrolases/metabolism , Humans , Lipase/metabolism , Lipolysis , Phospholipases A1/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
...