Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32033384

RESUMEN

This study investigated the reduction of hexavalent chromium (Cr(VI)) in a clayey residual soil using nanoscale zero-valent iron (nZVI). Five different ratios between nZVI and Cr(VI) were tested in batch tests (1000/11; 1000/23; 1000/35; 1000/70, and 1000/140 mg/mg) with the soil. With the selected proportion resulting best efficiency, the column tests were conducted, with molded specimens of 5 cm in diameter and 5 cm in height, with different nZVI injection pressures (10, 30, and 100 kPa). The soil was contaminated with 800 mg/kg of Cr(VI). The Cr(VI) and Cr(III) analyses were performed following the USEPA 3060A and USEPA 7196A standards. The results show that the reduction of Cr(VI) is dependent on the ratio between nZVI and Cr(VI), reaching 98% of efficiency. In column tests, the pressure of 30 kPa was the most efficient. As pressure increased, contaminant leaching increased. The permeability decreased over time due to the gradual increase in filtration and formation of oxyhydroxides, limiting nZVI mobility. Overall, nZVI is efficient for soil remediation with Cr(VI), but the injection process can spread the contaminated if not properly controlled during in situ application.


Asunto(s)
Cromo/química , Cromo/toxicidad , Arcilla/química , Restauración y Remediación Ambiental/métodos , Hierro/química , Nanotecnología/métodos , Contaminantes del Suelo/toxicidad
2.
Environ Sci Pollut Res Int ; 27(9): 9288-9296, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31916159

RESUMEN

Contaminated clay soils pose problems to public health and the environment in several parts of the world. Very little is known about the transport of decontaminating agents used in remediation process under natural, undisturbed conditions. Nanomaterials, especially those made of nanoscale zero-valent iron (nZVI), have been most frequently used for remediation of contaminated soils because of their higher reactivity, lower toxicity, and lower cost than other metallic nanoparticles. Even though the nanoparticle size is smaller than soil pores, clogging may occur over time due to agglomeration of nanoparticles, which could reduce the soil's natural permeability and thereby cause filtration of the nanoparticles. The use of a stabilizer in the nanoparticles can modify the reactivity but improves their mobility in the soil system. Thus, the objective of this work was to evaluate the hydraulic conductivity of residual clay soil under the injection of different types and concentrations of nZVI with and without surfactant stabilizer (NANOFER 25, NANOFER 25S, and NANOFER STAR in powder at 1 g/L, 4 g/L, 7 g/L, and 10 g/L concentrations), and to model transport of these nZVI suspensions in this soil system. Undisturbed cylindrical soil samples collected from the field were used, and hydraulic conductivity tests were performed using a column apparatus. The results showed that the presence of the stabilizer in the nZVI influenced the nanoparticles' mobility. The nZVI concentrations of 1 and 4 g/L did not affect the natural soil hydraulic conductivity. However, higher concentrations reduced the hydraulic conductivity value, which retarded the migration of nZVI as reflected in the value of filtration parameter.


Asunto(s)
Restauración y Remediación Ambiental , Nanopartículas del Metal , Contaminantes del Suelo , Arcilla , Hierro/química , Nanopartículas del Metal/química , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química
3.
Chemosphere ; 230: 92-106, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31102876

RESUMEN

In recent years, the broader environmental impacts of remediation that arise from different remediation activities has drawn attention of practitioners, remediation design professionals and academicians to evaluate the net environmental benefit of environmental remediation projects. The main objective of this paper is to describe the Quantitative Assessment of Life Cycle Sustainability (QUALICS) framework, a new tool developed to strengthen decision-making in the selection of sustainable remedial technologies for the clean-up of contaminated sites. The proposed framework is a combination of two multi-criteria evaluation methods namely, the Integrated Value Model for Sustainable Assessment (MIVES) and Analytic Hierarchy Process (AHP). The QUALICS uses a multi-criteria assessment framework to support decision-making in remediation projects. A description of the methodology adopted for sustainability assessment of alternative remedial strategies using QUALICS framework is presented in this study. In addition, a case study is discussed to demonstrate the application of the QUALICS framework for the sustainability assessment of different remediation options for clean-up of a contaminated site. The case study involves sustainability assessment of different remediation options namely, electrokinetic remediation (EKR), excavation/disposal, and phytoremediation for remediation of a contaminated site. A sensitivity analysis was also performed for the EKR option by varying different parameters including electrode materials, energy source, electrolyte used, to analyze their influence on the sustainability of the alternative remedial options. The proposed framework can also be applied to any project in general to quantify and compare the sustainability indices of each of the alternative options considered and thereby identify the most sustainable option.


Asunto(s)
Monitoreo del Ambiente , Restauración y Remediación Ambiental , Animales , Biodegradación Ambiental , Toma de Decisiones , Estadios del Ciclo de Vida
4.
Environ Sci Pollut Res Int ; 24(10): 9594-9604, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28247272

RESUMEN

This study investigates the retention of biodiesel in residual clayey soil during biostimulation by nutrients (nitrogen, phosphorus, and potassium) under conditions of rainfall infiltration. Several column tests were conducted in a laboratory under different void ratios (1.14, 1.24, and 1.34), varying moisture contents (15, 25, and 35%), and in both the presence and absence of biostimulation. The volume of biodiesel (which was equivalent to the volume of voids in the soil) was placed atop the soil and allowed to percolate for a period of 15 days. The soil was subjected to different rainfall infiltration conditions (0.30 or 60 mm). The greatest reductions in residual contaminants occurred after 60 mm of rain simulation, at values of up to 74% less than in samples with the same conditions but no precipitation. However, the residual contamination decay rate was greater with 0-30 mm (0.29 g/mm) of precipitation than with 30-60 mm (0.075 g/mm). Statistical assessment revealed that increased moisture and the presence of nutrients were the factors with the most powerful effect on contaminant retention in the soil. The residual contaminant level was 21 g/kg at a moisture content of 15% and no precipitation, decreasing to 12 g/kg at 35% moisture and no precipitation. Accordingly, it is possible to conclude that biostimulation and rainfall infiltration conditions can decrease the retention of contaminants in soil and allow a greater leaching or spreading of the contamination. All of these phenomena are worthy of careful examination for the in situ bioremediation of organic contamination. HIGHLIGHTS: • The higher moisture in the soil, due to a high initial moisture content and/or infiltration of rainfall, can reduce contaminant retention, • The use of biostimulation through the addition of nutrients to accelerate the biodegradation of toxic organic contaminants may induce inadvertent undesirable interactions between the soil and the contaminant. • When adopting biostimulation for bioremediation, the effects of rainfall should be addressed; ideally, it should be prevented from entering the affected site, in order to avoid increased contaminant leaching and potential spreading.


Asunto(s)
Biocombustibles , Suelo , Biodegradación Ambiental , Lluvia , Contaminantes del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA