Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37374475

RESUMEN

There is a fast-growing interest in the use of selective laser melting (SLM) for metal/alloy additive manufacturing. Our current knowledge of SLM-printed 316 stainless steel (SS316) is limited and sometimes appears sporadic, presumably due to the complex interdependent effects of a large number of process variables of the SLM processing. This is reflected in the discrepant findings in the crystallographic textures and microstructures in this investigation compared to those reported in the literature, which also vary among themselves. The as-printed material is macroscopically asymmetric in terms of both structure and crystallographic texture. The <101> and <111> crystallographic directions align parallel with the SLM scanning direction (SD) and build direction (BD), respectively. Likewise, some characteristic low-angle boundary features have been reported to be crystallographic, while this investigation unequivocally proves them to be non-crystallographic, since they always maintain an identical alignment with the SLM laser scanning direction, irrespective of the matrix material's crystal orientation. There are also 500 ± 200 nm columnar or cellular features, depending on the cross-section, which are generally found all over the sample. These columnar or cellular features are formed with walls made of dense packing of dislocations entangled with Mn-, Si- and O-enriched amorphous inclusions. They remain stable after ASM solution treatments at a temperature of 1050 °C, and therefore, are capable of hindering boundary migration events of recrystallization and grain growth. Thus, the nanoscale structures can be retained at high temperatures. Large 2-4 µm inclusions form during the solution treatment, within which the chemical and phase distribution are heterogeneous.

2.
Sci Adv ; 9(1): eadd1511, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608136

RESUMEN

A potential record of Earth's magnetic field going back 4.2 billion years (Ga) ago is carried by magnetite inclusions in zircon grains from the Jack Hills. This magnetite may be secondary in nature, however, meaning that the magnetic record is much younger than the zircon crystallization age. Here, we use atom probe tomography to show that Pb-bearing nanoclusters in magnetite-bearing Jack Hills zircons formed during two discrete events at 3.4 and <2 Ga. The older population of clusters contains no detectable Fe, whereas roughly half of the younger population of clusters is Fe bearing. This result shows that the Fe required to form secondary magnetite entered the zircon sometime after 3.4 Ga and that remobilization of Pb and Fe during an annealing event occurred more than 1 Ga after deposition of the Jack Hills sediment at 3 Ga. The ability to date Fe mobility linked to secondary magnetite formation provides new possibilities to improve our knowledge of the Archean geodynamo.

3.
Proc Natl Acad Sci U S A ; 120(5): e2214353120, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36689662

RESUMEN

Rubble piles asteroids consist of reassembled fragments from shattered monolithic asteroids and are much more abundant than previously thought in the solar system. Although monolithic asteroids that are a kilometer in diameter have been predicted to have a lifespan of few 100 million years, it is currently not known how durable rubble pile asteroids are. Here, we show that rubble pile asteroids can survive ambient solar system bombardment processes for extremely long periods and potentially 10 times longer than their monolith counterparts. We studied three regolith dust particles recovered by the Hayabusa space probe from the rubble pile asteroid 25143 Itokawa using electron backscatter diffraction, time-of-flight secondary ion mass spectrometry, atom probe tomography, and 40Ar/39Ar dating techniques. Our results show that the particles have only been affected by shock pressure of ca. 5 to 15 GPa. Two particles have 40Ar/39Ar ages of 4,219 ± 35 and 4,149 ± 41 My and when combined with thermal and diffusion models; these results constrain the formation age of the rubble pile structure to ≥4.2 billion years ago. Such a long survival time for an asteroid is attributed to the shock-absorbent nature of rubble pile material and suggests that rubble piles are hard to destroy once they are created. Our results suggest that rubble piles are probably more abundant in the asteroid belt than previously thought and provide constrain to help develop mitigation strategies to prevent asteroid collisions with Earth.


Asunto(s)
Polvo , Planeta Tierra , Difusión , Electrones , Longevidad
4.
Microsc Microanal ; 26(4): 750-757, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32148216

RESUMEN

Atom probe tomography (APT) is used to quantify atomic-scale elemental and isotopic compositional variations within a very small volume of material (typically <0.01 µm3). The small analytical volume ideally contains specific compositional or microstructural targets that can be placed within the context of the previously characterized surface in order to facilitate a correct interpretation of APT data. In this regard, careful targeting and preparation are paramount to ensure that the desired target, which is often smaller than 100 nm, is optimally located within the APT specimen. Needle-shaped specimens required for atom probe analysis are commonly prepared using a focused ion beam scanning electron microscope (FIB-SEM). Here, we utilize FIB-SEM-based time-of-flight secondary ion mass spectrometry (ToF-SIMS) to illustrate a novel approach to targeting <100 nm compositional and isotopic variations that can be used for targeting regions of interest for subsequent lift-out and APT analysis. We present a new method for high-spatial resolution targeting of small features that involves using FIB-SEM-based electron deposition of platinum "buttons" prior to standard lift-out and sharpening procedures for atom probe specimen manufacture. In combination, FIB-ToF-SIMS analysis and application of the "button" method ensure that even the smallest APT targets can be successfully captured in extracted needles.

5.
Nat Commun ; 10(1): 5103, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31704918

RESUMEN

Mantle melts provide a window on processes related to global plate tectonics. The composition of chromian spinel (Cr-spinel) from mafic-ultramafic rocks has been widely used for tracing the geotectonic environments, the degree of mantle melting and the rate of mid-ocean ridge spreading. The assumption is that Cr-spinel's core composition (Cr# = Cr/(Cr + Al)) is homogenous, insensitive to post-formation modification and therefore a robust petrogenetic indicator. However, we demonstrate that the composition of Cr-spinel can be modified by fluid/melt-rock interactions in both sub-arc and sub-mid oceanic mantle. Metasomatism can produce Al-Cr heterogeneity in Cr-spinel that lowers the Cr/Al ratio, and therefore modifies the Cr#, making Cr# ineffective as a geotectonic and mantle melting indicator. Our analysis also demonstrates that Cr-spinel is a potential sink for fluid-mobile elements, especially in subduction zone environments. The heterogeneity of Cr# in Cr-spinel can, therefore, be used as an excellent tracer for metasomatic processes.

6.
Environ Sci Technol ; 53(22): 13126-13135, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31657213

RESUMEN

Goethite (α-FeOOH) is dispersed throughout the earth's surface, and its propensity to recrystallize in aqueous solutions determines whether this mineral is a source or sink for critical trace elements in the environment. Under reducing conditions, goethite commonly coexists with aqueous Fe(II) (Fe(II)aq), which accelerates recrystallization by coupled electron transfer and atom exchange. Quantifying the amount of the mineral phase that exchanges its structural Fe(III) atoms with Fe(II)aq is complicated by recrystallization models with untested assumptions of whether, and to what extent, the recrystallized portion of the mineral continues to interact with the solution. Here, we reacted nanoparticulate goethite with 57Fe-enriched Fe(II)aq and used atom probe tomography (APT) to resolve the three-dimensional distribution of Fe isotopes in goethite at the sub nm scale. We found that the 57Fe tracer isotope is enriched in the bulk structure (tens of nanometers deep), with some samples having 57Fe penetration throughout at a level that is similar to the isotopic composition of Fe(II)aq. This suggests that some particles undergo near-complete recrystallization. In other cases, however, the distribution of 57Fe is more heterogeneous and generally concentrates near the particle periphery. Nanoparticle encapsulation and subsequent APT can hence capture hidden recrystallization mechanisms which are critical to predicting mineral reactivity in aqueous solutions.


Asunto(s)
Compuestos de Hierro , Oligoelementos , Compuestos Férricos , Minerales , Oxidación-Reducción
7.
Microsc Microanal ; 25(2): 539-546, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30706842

RESUMEN

Since the introduction of laser-assisted atom probe, analysis of nonconductive materials by atom probe tomography (APT) has become more routine. To obtain high-quality data, a number of acquisition variables needs to be optimized for the material of interest, and for the specific question being addressed. Here, the rutile (TiO2) reference material 'Windmill Hill Quartzite,' used for secondary ion mass spectrometry U-Pb dating and laser-ablation inductively coupled plasma mass spectrometry, was analyzed by laser-assisted APT to constrain optimal running conditions. Changes in acquisition parameters such as laser energy and detection rate are evaluated in terms of their effect on background noise, ionization state, hit-multiplicity, and thermal tails. Higher laser energy results in the formation of more complex molecular ions and affects the ionization charge state. At lower energies, background noise and hit-multiplicity increase, but thermal tails shorten. There are also correlations between the acquisition voltage and several of these metrics, which remain to be fully understood. The results observed when varying the acquisition parameters will be discussed in detail in the context of utilizing APT analysis of rutile within geology.

8.
Sci Adv ; 2(9): e1601318, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27617295

RESUMEN

Isotopic discordance is a common feature in zircon that can lead to an erroneous age determination, and it is attributed to the mobilization and escape of radiogenic Pb during its post-crystallization geological evolution. The degree of isotopic discordance measured at analytical scales of ~10 µm often differs among adjacent analysis locations, indicating heterogeneous distributions of Pb at shorter length scales. We use atom probe microscopy to establish the nature of these sites and the mechanisms by which they form. We show that the nanoscale distribution of Pb in a ~2.1 billion year old discordant zircon that was metamorphosed c. 150 million years ago is defined by two distinct Pb reservoirs. Despite overall Pb loss during peak metamorphic conditions, the atom probe data indicate that a component of radiogenic Pb was trapped in 10-nm dislocation loops that formed during the annealing of radiation damage associated with the metamorphic event. A second Pb component, found outside the dislocation loops, represents homogeneous accumulation of radiogenic Pb in the zircon matrix after metamorphism. The (207)Pb/(206)Pb ratios measured from eight dislocation loops are equivalent within uncertainty and yield an age consistent with the original crystallization age of the zircon, as determined by laser ablation spot analysis. Our results provide a specific mechanism for the trapping and retention of radiogenic Pb during metamorphism and confirm that isotopic discordance in this zircon is characterized by discrete nanoscale reservoirs of Pb that record different isotopic compositions and yield age data consistent with distinct geological events. These data may provide a framework for interpreting discordance in zircon as the heterogeneous distribution of discrete radiogenic Pb populations, each yielding geologically meaningful ages.


Asunto(s)
Sedimentos Geológicos/química , Geología , Plomo/química , Silicatos/química , Circonio/química , Rayos Láser , Erupciones Volcánicas/análisis
9.
Nat Commun ; 7: 10665, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26879892

RESUMEN

The extension of subduction processes into the Eoarchaean era (4.0-3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ∼3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics.

10.
Geochem Trans ; 7: 10, 2006 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-17181855

RESUMEN

The effects of crystal-plasticity on the U-Th-Pb system in zircon is studied by quantitative microstructural and microchemical analysis of a large zircon grain collected from pyroxenite of the Lewisian Complex, Scotland. Electron backscatter diffraction (EBSD) mapping reveals a c.18 degree variation in crystallographic orientation that comprises both a gradual change in orientation and a series of discrete low-angle (<4 degrees) boundaries. These microstructural data are consistent with crystal-plastic deformation of zircon associated with the formation and migration of dislocations. A heterogeneous pattern of dark cathodoluminescence, with the darkest domains coinciding with low-angle boundaries, mimics the deformation microstructure identified by EBSD. Geochemical data collected using the Sensitive High Resolution Ion MicroProbe (SHRIMP) shows a positive correlation between concentrations of the elements U, Th and Pb (ranging from 20-60 ppm, 30-110 ppm, and 14-36 ppm, respectively) and Th/U ratio (1.13-1.8) with the deformation microstructure. The highest measured concentrations and Th/U coincide with low-angle boundaries. This enrichment is interpreted to reflect enhanced bulk diffusion of U and Th due to the formation and migration of high-diffusivity dislocations. 207Pb/206Pb ages for individual analyses show no significant variation across the grain, and define a concordant, combined mean age of 2451 +/- 14 Ma. This indicates that the grain was deformed shortly after initial crystallization, most probably during retrograde Inverian metamorphism at amphibolite facies conditions. The elevated Th over U and consistent 207Pb/206Pb ages indicates that deformation most likely occurred in the presence of a late-stage magmatic fluid that drove an increase in the Th/U during deformation. The relative enrichment of Th over U implies that Th/U ratio may not always be a robust indicator of crystallization environment. This study provides the first evidence of deformation-related modification of the U-Th system in zircon and has fundamental implications for the application and interpretation of zircon trace element data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...