Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540278

RESUMEN

Technologies and biomaterials for 3D bioprinting have been developing extremely quickly in the past decade as they hold great potential in tissue engineering. This, together with the possibility to differentiate stem cells of different origin into any cell type, raises the hopes in regenerative medicine once again after the initial breakthrough with stem cells in the 1980s. Nevertheless, three decades of 3D bioprinting experiments have shown that the production of functional tissues would take a longer time than anticipated. Cartilage, one of the simplest tissues in the body, consists of only one cell type. It is not vascularised and innervated and does not have lymphatic vessels either, which makes it a perfect target tissue for successful implantation. The tremendous amount of work since the beginning of this century, combining the efforts of bioengineers, material scientists, biologists, and physicians, has culminated in multiple proof-of-concept constructs that have been implanted in animals. However, there is no single reproducible, standardised, widely accessible and accepted strategy that can be readily applied in the clinic. In this review, we focus on the current progress in the field of the 3D biofabrication of articular cartilage and critically assess failures and future challenges.

2.
Carbohydr Polym ; 260: 117793, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33712141

RESUMEN

The present study demonstrates the extrusion printing of highly viscous and thixotropic hydroxyethylcellulose-based bioinks blended with various concentrations of sodium alginate (SA) and embedded with HeLa cells. The cell viability is shown to be inversely proportional to the relative SA content and can be as high as 81.5 % following one day of incubation. Furthermore, the biocompatibility of the hydrogel matrix supports cell proliferation resulting in an order of magnitude larger number of cells after a 7-day incubation. The cell viability is negatively affected mostly by the extrusion printing itself with some cell death occurring during their embedding in the hydrogels. After embedding the HeLa cells in the blends containing 1 and 2.5 % SA, the cell viability is not significantly affected by the residence time of up to 90 min before the bioink extrusion. The printed constructs can be utilized as a cervical tumor model.


Asunto(s)
Bioimpresión , Celulosa/análogos & derivados , Alginatos/química , Supervivencia Celular/efectos de los fármacos , Celulosa/química , Femenino , Células HeLa , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Tinta , Paclitaxel/química , Paclitaxel/farmacología , Reología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
3.
Chemphyschem ; 19(18): 2295-2298, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-29924463

RESUMEN

Periodic mesoporous organosilica (PMO) thin films were synthesized by evaporation-induced self-assembly of 1,2-bis(triethoxysilyl)ethane and an ionic Gemini 16-12-16 surfactant under acidic conditions. The films were characterized by Fourier-transform infrared spectroscopy, grazing-incidence small-angle X-ray scattering, ellipsometric porosimetry, impedance measurements, and nanoindentation. The ease of control of the packing parameter in Gemini surfactants makes the PMO film templated by a Gemini an exciting first step towards small pore size PMO films with engineered mesostructures.

4.
Chemphyschem ; 18(20): 2846-2849, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28816012

RESUMEN

The mesophase formation in spin-coated periodic mesoporous organosilica (PMO) films aged at a controlled ambient humidity is investigated by time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). The investigation demonstrates the existence of a tunable steady state in PMO spin-coated films. Thus, a film deposited at a relative humidity of 20 % has a lamellar mesophase, whereas a subsequent increase to 70 % leads to a phase transformation resulting in a P63 /mmc space group. On the other hand, an increase of the surfactant to organosilica molar ratio of between 0.26 and 0.31 results in films which at 70 % humidity form a mix of 2D and 3D hexagonal phases. A further increase of the surfactant amount leads to films with a 2D hexagonal phase. Finally, the different mesophases observed as a function of the solution aging emphasize the importance of the degree of polycondensation of the organosilica oligomers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...