Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 606(7914): 489-493, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35705821

RESUMEN

Entangling microwave-frequency superconducting quantum processors through optical light at ambient temperature would enable means of secure communication and distributed quantum information processing1. However, transducing quantum signals between these disparate regimes of the electro-magnetic spectrum remains an outstanding goal2-9, and interfacing superconducting qubits, which are constrained to operate at millikelvin temperatures, with electro-optic transducers presents considerable challenges owing to the deleterious effects of optical photons on superconductors9,10. Moreover, many remote entanglement protocols11-14 require multiple qubit gates both preceding and following the upconversion of the quantum state, and thus an ideal transducer should impart minimal backaction15 on the qubit. Here we demonstrate readout of a superconducting transmon qubit through a low-backaction electro-optomechanical transducer. The modular nature of the transducer and circuit quantum electrodynamics system used in this work enable complete isolation of the qubit from optical photons, and the backaction on the qubit from the transducer is less than that imparted by thermal radiation from the environment. Moderate improvements in the transducer bandwidth and the added noise will enable us to leverage the full suite of tools available in circuit quantum electrodynamics to demonstrate transduction of non-classical signals from a superconducting qubit to the optical domain.

2.
Phys Rev Lett ; 121(15): 153202, 2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30362778

RESUMEN

Atomic magnetometry is one of the most sensitive ways to measure magnetic fields. We present a method for converting a naturally scalar atomic magnetometer into a vector magnetometer by exploiting the polarization dependence of hyperfine transitions in rubidium atoms. First, we fully determine the polarization ellipse of an applied microwave field using a self-calibrating method, i.e., a method in which the light-atom interaction provides everything required to know the field in an orthogonal laboratory frame. We then measure the direction of an applied static field using the polarization ellipse as a three-dimensional reference defined by Maxwell's equations. Although demonstrated with trapped atoms, this technique could be applied to atomic vapors, or a variety of atomlike systems.

3.
Rev Sci Instrum ; 88(9): 094701, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28964202

RESUMEN

An electro-optomechanical device capable of microwave-to-optics conversion has recently been demonstrated, with the vision of enabling optical networks of superconducting qubits. Here we present an improved converter design that uses a three-dimensional microwave cavity for coupling between the microwave transmission line and an integrated LC resonator on the converter chip. The new design simplifies the optical assembly and decouples it from the microwave part of the setup. Experimental demonstrations show that the modular device assembly allows us to flexibly tune the microwave coupling to the converter chip while maintaining small loss. We also find that electromechanical experiments are not impacted by the additional microwave cavity. Our design is compatible with a high-finesse optical cavity and will improve optical performance.

4.
Phys Rev Lett ; 116(6): 063601, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26918990

RESUMEN

The radiation pressure of light can act to damp and cool the vibrational motion of a mechanical resonator, but even if the light field has no thermal component, shot noise still sets a limit on the minimum phonon occupation. In optomechanical sideband cooling in a cavity, the finite off-resonant Stokes scattering defined by the cavity linewidth combined with shot noise fluctuations dictates a quantum backaction limit, analogous to the Doppler limit of atomic laser cooling. In our work, we sideband cool a micromechanical membrane resonator to the quantum backaction limit. Monitoring the optical sidebands allows us to directly observe the mechanical object come to thermal equilibrium with the optical bath. This level of optomechanical coupling that overwhelms the intrinsic thermal decoherence was not reached in previous ground-state cooling demonstrations.

5.
Nature ; 527(7577): 208-11, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26524533

RESUMEN

To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

6.
Science ; 345(6194): 306-9, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24968938

RESUMEN

The quantum statistics of atoms is typically observed in the behavior of an ensemble via macroscopic observables. However, quantum statistics modifies the behavior of even two particles. Here, we demonstrate near-complete control over all the internal and external degrees of freedom of two laser-cooled (87)Rb atoms trapped in two optical tweezers. This controllability allows us to observe signatures of indistinguishability via two-particle interference. Our work establishes laser-cooled atoms in optical tweezers as a promising route to bottom-up engineering of scalable, low-entropy quantum systems.

7.
Science ; 339(6121): 801-4, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23413350

RESUMEN

The quantum mechanics of position measurement of a macroscopic object is typically inaccessible because of strong coupling to the environment and classical noise. In this work, we monitor a mechanical resonator subject to an increasingly strong continuous position measurement and observe a quantum mechanical back-action force that rises in accordance with the Heisenberg uncertainty limit. For our optically based position measurements, the back-action takes the form of a fluctuating radiation pressure from the Poisson-distributed photons in the coherent measurement field, termed radiation pressure shot noise. We demonstrate a back-action force that is comparable in magnitude to the thermal forces in our system. Additionally, we observe a temporal correlation between fluctuations in the radiation force and in the position of the resonator.

8.
Phys Rev Lett ; 108(8): 083603, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22463530

RESUMEN

We study the mechanical quality factors of bilayer aluminum-silicon-nitride membranes. By coating ultrahigh-Q Si(3)N(4) membranes with a more lossy metal, we can precisely measure the effect of material loss on Q's of tensioned resonator modes over a large range of frequencies. We develop a theoretical model that interprets our results and predicts the damping can be reduced significantly by patterning the metal film. Using such patterning, we fabricate Al-Si(3)N(4) membranes with ultrahigh Q at room temperature. Our work elucidates the role of material loss in the Q of membrane resonators and informs the design of hybrid mechanical oscillators for optical-electrical-mechanical quantum interfaces.

9.
Proc Natl Acad Sci U S A ; 107(3): 1005-10, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20080573

RESUMEN

Recently, remarkable advances have been made in coupling a number of high-Q modes of nano-mechanical systems to high-finesse optical cavities, with the goal of reaching regimes in which quantum behavior can be observed and leveraged toward new applications. To reach this regime, the coupling between these systems and their thermal environments must be minimized. Here we propose a novel approach to this problem, in which optically levitating a nano-mechanical system can greatly reduce its thermal contact, while simultaneously eliminating dissipation arising from clamping. Through the long coherence times allowed, this approach potentially opens the door to ground-state cooling and coherent manipulation of a single mesoscopic mechanical system or entanglement generation between spatially separate systems, even in room-temperature environments. As an example, we show that these goals should be achievable when the mechanical mode consists of the center-of-mass motion of a levitated nanosphere.

10.
Phys Rev Lett ; 102(8): 083601, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19257737

RESUMEN

Single photons from a coherent input are efficiently redirected to a separate output by way of a fiber-coupled microtoroidal cavity interacting with individual cesium atoms. By operating in an overcoupled regime for the input-output to a tapered fiber, our system functions as a quantum router with high efficiency for photon sorting. Single photons are reflected and excess photons transmitted, as confirmed by observations of photon antibunching (bunching) for the reflected (transmitted) light. Our photon router is robust against large variations of atomic position and input power, with the observed photon antibunching persisting for intracavity photon number 0.03 < or approximately similar n < or approximately similar 0.7.

11.
Phys Rev Lett ; 103(20): 207204, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-20366008

RESUMEN

We study high-stress SiN films for reaching the quantum regime with mesoscopic oscillators connected to a room-temperature thermal bath, for which there are stringent requirements on the oscillators' quality factors and frequencies. Our SiN films support mechanical modes with unprecedented products of mechanical quality factor Q(m) and frequency nu(m) reaching Q(m)nu(m) approximately or = 2 x 10(13) Hz. The SiN membranes exhibit a low optical absorption characterized by Im(n) < or approximately equal to 10(-5) at 935 nm, representing a 15 times reduction for SiN membranes. We have developed an apparatus to simultaneously cool the motion of multiple mechanical modes based on a short, high-finesse Fabry-Perot cavity and present initial cooling results along with future possibilities.

12.
Phys Rev Lett ; 101(19): 197203, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-19113301

RESUMEN

We measure the response and thermal motion of a high-Q nanomechanical oscillator coupled to a superconducting microwave cavity in the resolved-sideband regime where the oscillator's resonance frequency exceeds the cavity's linewidth. The coupling between the microwave field and mechanical motion is strong enough for radiation pressure to overwhelm the intrinsic mechanical damping. This radiation-pressure damping cools the fundamental mechanical mode by a factor of 5 below the thermal equilibrium temperature in a dilution refrigerator to a phonon occupancy of 140 quanta.

13.
Phys Rev Lett ; 97(22): 220406, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17155785

RESUMEN

We present a measurement of the potential energy of an ultracold trapped gas of 40K atoms in the BCS-BEC crossover and investigate the temperature dependence of this energy at a wide Feshbach resonance, where the gas is in the unitarity limit. In particular, we study the ratio of the potential energy in the region of the unitarity limit to that of a noninteracting gas, and in the T=0 limit we extract the universal many-body parameter beta. We find beta=-0.54_{-0.12};{+0.05}; this value is consistent with previous measurements using 6Li atoms and also with recent theory and Monte Carlo calculations. This result demonstrates the universality of ultracold Fermi gases in the strongly interacting regime.

14.
Phys Rev Lett ; 95(25): 250404, 2005 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-16384438

RESUMEN

We observe dramatic changes in the atomic momentum distribution of a Fermi gas in the crossover region between the BCS theory superconductivity and Bose-Einstein condensation (BEC) of molecules. We study the shape of the momentum distribution and the kinetic energy as a function of interaction strength. The momentum distributions are compared to a mean-field crossover theory, and the kinetic energy is compared to theories for the two weakly interacting limits. This measurement provides a unique probe of pairing in a strongly interacting Fermi gas.

15.
Phys Rev Lett ; 94(11): 110401, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15903831

RESUMEN

Pair-correlated fermionic atoms are created through dissociation of weakly bound molecules near a magnetic-field Feshbach resonance. We show that correlations between atoms in different spin states can be detected using the atom shot noise in absorption images. Furthermore, using time-of-flight imaging we have observed atom pair correlations in momentum space.

16.
Phys Rev Lett ; 94(12): 120402, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15903898

RESUMEN

We investigate the production efficiency of ultracold molecules in bosonic 85Rb and fermionic 40K when the magnetic field is swept across a Feshbach resonance. For adiabatic sweeps of the magnetic field, our novel model shows that the conversion efficiency of both species is solely determined by the phase space density of the atomic cloud, in contrast with a number of theoretical predictions. In the nonadiabatic regime our measurements of the 85Rb molecule conversion efficiency follow a Landau-Zener model.

17.
Phys Rev Lett ; 94(7): 070403, 2005 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-15783792

RESUMEN

We measure excitation spectra of an ultracold gas of fermionic (40)K atoms in the BCS-Bose-Einstein-condensation (BEC) crossover regime. The measurements are performed with a novel spectroscopy that employs a small modulation of the B field close to a Feshbach resonance to give rise to a modulation of the interaction strength. With this method we observe both a collective excitation as well as the dissociation of fermionic atom pairs in the strongly interacting regime. The excitation spectra reveal the binding energy or excitation gap for pairs in the crossover region.

18.
Phys Rev Lett ; 92(15): 150405, 2004 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-15169273

RESUMEN

Spatial correlations are observed in an ultracold gas of fermionic atoms close to a Feshbach resonance. The correlations are detected by inducing spin-changing rf transitions between pairs of atoms. We observe the process in the strongly interacting regime for attractive as well as for repulsive atom-atom interactions and both in the regime of high and low quantum degeneracy. The observations are compared with a two-particle model that provides theoretical predictions for the measured rf transition rates.

19.
Phys Rev Lett ; 92(4): 040403, 2004 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-14995356

RESUMEN

We have observed condensation of fermionic atom pairs in the BCS-BEC crossover regime. A trapped gas of fermionic 40K atoms is evaporatively cooled to quantum degeneracy and then a magnetic-field Feshbach resonance is used to control the atom-atom interactions. The location of this resonance is precisely determined from low-density measurements of molecule dissociation. In order to search for condensation on either side of the resonance, we introduce a technique that pairwise projects fermionic atoms onto molecules; this enables us to measure the momentum distribution of fermionic atom pairs. The transition to condensation of fermionic atom pairs is mapped out as a function of the initial atom gas temperature T compared to the Fermi temperature T(F) for magnetic-field detunings on both the BCS and BEC sides of the resonance.

20.
Phys Rev Lett ; 92(8): 083201, 2004 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-14995771

RESUMEN

We report a dramatic magnetic-field dependence in the lifetime of trapped, ultracold diatomic molecules created through an s-wave Feshbach resonance between fermionic atoms. The molecule lifetime increases from less than 1 ms away from the Feshbach resonance to greater than 100 ms near resonance. We also have measured the trapped atom lifetime as a function of magnetic field near the Feshbach resonance; we find that the atom loss is more pronounced on the side of the resonance containing the molecular bound state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...