Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 10(23): 12764-12776, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304492

RESUMEN

Standard methods for studying the association between two ecologically important variables provide only a small slice of the information content of the association, but statistical approaches are available that provide comprehensive information. In particular, available approaches can reveal tail associations, that is, accentuated or reduced associations between the more extreme values of variables. We here study the nature and causes of tail associations between phenological or population-density variables of co-located species, and their ecological importance. We employ a simple method of measuring tail associations which we call the partial Spearman correlation. Using multidecadal, multi-species spatiotemporal datasets on aphid first flights and marine phytoplankton population densities, we assess the potential for tail association to illuminate two major topics of study in community ecology: the stability or instability of aggregate community measures such as total community biomass and its relationship with the synchronous or compensatory dynamics of the community's constituent species; and the potential for fluctuations and trends in species phenology to result in trophic mismatches. We find that positively associated fluctuations in the population densities of co-located species commonly show asymmetric tail associations; that is, it is common for two species' densities to be more correlated when large than when small, or vice versa. Ordinary measures of association such as correlation do not take this asymmetry into account. Likewise, positively associated fluctuations in the phenology of co-located species also commonly show asymmetric tail associations. We provide evidence that tail associations between two or more species' population-density or phenology time series can be inherited from mutual tail associations of these quantities with an environmental driver. We argue that our understanding of community dynamics and stability, and of phenologies of interacting species, can be meaningfully improved in future work by taking into account tail associations.

2.
PLoS Comput Biol ; 15(3): e1006744, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30921328

RESUMEN

Large-scale spatial synchrony is ubiquitous in ecology. We examined 56 years of data representing chlorophyll density in 26 areas in British seas monitored by the Continuous Plankton Recorder survey. We used wavelet methods to disaggregate synchronous fluctuations by timescale and determine that drivers of synchrony include both biotic and abiotic variables. We tested these drivers for statistical significance by comparison with spatially synchronous surrogate data. Identification of causes of synchrony is distinct from, and goes beyond, determining drivers of local population dynamics. We generated timescale-specific models, accounting for 61% of long-timescale (> 4yrs) synchrony in a chlorophyll density index, but only 3% of observed short-timescale (< 4yrs) synchrony. Thus synchrony and its causes are timescale-specific. The dominant source of long-timescale chlorophyll synchrony was closely related to sea surface temperature, through a climatic Moran effect, though likely via complex oceanographic mechanisms. The top-down action of Calanus finmarchicus predation enhances this environmental synchronising mechanism and interacts with it non-additively to produce more long-timescale synchrony than top-down and climatic drivers would produce independently. Our principal result is therefore a demonstration of interaction effects between Moran drivers of synchrony, a new mechanism for synchrony that may influence many ecosystems at large spatial scales.


Asunto(s)
Clima , Océanos y Mares , Fitoplancton/metabolismo , Clorofila/metabolismo , Ecosistema
3.
J Anim Ecol ; 88(3): 484-494, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30474262

RESUMEN

Taylor's law (TL), a commonly observed and applied pattern in ecology, describes variances of population densities as related to mean densities via log(variance) = log(a) + b*log(mean). Variations among datasets in the slope, b, have been associated with multiple factors of central importance in ecology, including strength of competitive interactions and demographic rates. But these associations are not transparent, and the relative importance of these and other factors for TL slope variation is poorly studied. TL is thus a ubiquitously used indicator in ecology, the understanding of which is still opaque. The goal of this study was to provide tools to help fill this gap in understanding by providing proximate determinants of TL slopes, statistical quantities that are correlated to TL slopes but are simpler than the slope itself and are more readily linked to ecological factors. Using numeric simulations and 82 multi-decadal population datasets, we here propose, test and apply two proximate statistical determinants of TL slopes which we argue can become key tools for understanding the nature and ecological causes of TL slope variation. We find that measures based on population skewness, coefficient of variation and synchrony are effective proximate determinants. We demonstrate their potential for application by using them to help explain covariation in slopes of spatial and temporal TL (two common types of TL). This study provides tools for understanding TL, and demonstrates their usefulness.


Asunto(s)
Ecología , Modelos Biológicos , Animales , Densidad de Población
4.
Proc Natl Acad Sci U S A ; 114(26): 6788-6793, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28559312

RESUMEN

Taylor's law (TL) is a widely observed empirical pattern that relates the variances to the means of groups of nonnegative measurements via an approximate power law: variance g ≈ a [Formula: see text] mean gb , where g indexes the group of measurements. When each group of measurements is distributed in space, the exponent b of this power law is conjectured to reflect aggregation in the spatial distribution. TL has had practical application in many areas since its initial demonstrations for the population density of spatially distributed species in population ecology. Another widely observed aspect of populations is spatial synchrony, which is the tendency for time series of population densities measured in different locations to be correlated through time. Recent studies showed that patterns of population synchrony are changing, possibly as a consequence of climate change. We use mathematical, numerical, and empirical approaches to show that synchrony affects the validity and parameters of TL. Greater synchrony typically decreases the exponent b of TL. Synchrony influenced TL in essentially all of our analytic, numerical, randomization-based, and empirical examples. Given the near ubiquity of synchrony in nature, it seems likely that synchrony influences the exponent of TL widely in ecologically and economically important systems.

5.
Proc Natl Acad Sci U S A ; 113(50): E8089-E8095, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911776

RESUMEN

Ecosystems can show sudden and persistent changes in state despite only incremental changes in drivers. Such critical transitions are difficult to predict, because the state of the system often shows little change before the transition. Early-warning indicators (EWIs) are hypothesized to signal the loss of system resilience and have been shown to precede critical transitions in theoretical models, paleo-climate time series, and in laboratory as well as whole lake experiments. The generalizability of EWIs for detecting critical transitions in empirical time series of natural aquatic ecosystems remains largely untested, however. Here we assessed four commonly used EWIs on long-term datasets of five freshwater ecosystems that have experienced sudden, persistent transitions and for which the relevant ecological mechanisms and drivers are well understood. These case studies were categorized by three mechanisms that can generate critical transitions between alternative states: competition, trophic cascade, and intraguild predation. Although EWIs could be detected in most of the case studies, agreement among the four indicators was low. In some cases, EWIs were detected considerably ahead of the transition. Nonetheless, our results show that at present, EWIs do not provide reliable and consistent signals of impending critical transitions despite using some of the best routinely monitored freshwater ecosystems. Our analysis strongly suggests that a priori knowledge of the underlying mechanisms driving ecosystem transitions is necessary to identify relevant state variables for successfully monitoring EWIs.


Asunto(s)
Ecosistema , Agua Dulce , Modelos Biológicos , Animales , Bioestadística , Clima , Eutrofización , Cadena Alimentaria , Lagos , Conducta Predatoria , Factores de Tiempo
6.
Proc Natl Acad Sci U S A ; 113(34): E5062-71, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27503882

RESUMEN

Climate change is having a dramatic impact on marine animal and plant communities but little is known of its influence on marine prokaryotes, which represent the largest living biomass in the world oceans and play a fundamental role in maintaining life on our planet. In this study, for the first time to our knowledge, experimental evidence is provided on the link between multidecadal climatic variability in the temperate North Atlantic and the presence and spread of an important group of marine prokaryotes, the vibrios, which are responsible for several infections in both humans and animals. Using archived formalin-preserved plankton samples collected by the Continuous Plankton Recorder survey over the past half-century (1958-2011), we assessed retrospectively the relative abundance of vibrios, including human pathogens, in nine areas of the North Atlantic and North Sea and showed correlation with climate and plankton changes. Generalized additive models revealed that long-term increase in Vibrio abundance is promoted by increasing sea surface temperatures (up to ∼1.5 °C over the past 54 y) and is positively correlated with the Northern Hemisphere Temperature (NHT) and Atlantic Multidecadal Oscillation (AMO) climatic indices (P < 0.001). Such increases are associated with an unprecedented occurrence of environmentally acquired Vibrio infections in the human population of Northern Europe and the Atlantic coast of the United States in recent years.


Asunto(s)
Organismos Acuáticos/patogenicidad , Cambio Climático , Brotes de Enfermedades , Vibriosis/epidemiología , Vibrio/patogenicidad , Animales , Organismos Acuáticos/crecimiento & desarrollo , Océano Atlántico , Europa (Continente)/epidemiología , Humanos , New England/epidemiología , Mar del Norte , Plancton/crecimiento & desarrollo , Estudios Retrospectivos , Temperatura , Vibrio/crecimiento & desarrollo , Vibriosis/microbiología
7.
Glob Chang Biol ; 22(6): 2069-80, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26810148

RESUMEN

During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959-1980 and 1989-2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.


Asunto(s)
Cambio Climático , Ecosistema , Plancton/fisiología , Animales , Copépodos/fisiología , Decápodos/fisiología , Diatomeas/fisiología , Cadena Alimentaria , Mar del Norte , Dinámica Poblacional , Análisis Espacio-Temporal , Temperatura
8.
Glob Chang Biol ; 22(2): 682-703, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26598217

RESUMEN

Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.


Asunto(s)
Cambio Climático/historia , Modelos Teóricos , Clima , Historia del Siglo XX , Modelos Estadísticos , Análisis de Componente Principal , Temperatura , Erupciones Volcánicas
9.
ISME J ; 6(1): 21-30, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21753799

RESUMEN

The long-term effects of ocean warming on prokaryotic communities are unknown because of lack of historical data. We overcame this gap by applying a retrospective molecular analysis to the bacterial community on formalin-fixed samples from the historical Continuous Plankton Recorder archive, which is one of the longest and most geographically extensive collections of marine biological samples in the world. We showed that during the last half century, ubiquitous marine bacteria of the Vibrio genus, including Vibrio cholerae, increased in dominance within the plankton-associated bacterial community of the North Sea, where an unprecedented increase in bathing infections related to these bacteria was recently reported. Among environmental variables, increased sea surface temperature explained 45% of the variance in Vibrio data, supporting the view that ocean warming is favouring the spread of vibrios and may be the cause of the globally increasing trend in their associated diseases.


Asunto(s)
Agua de Mar/microbiología , Vibrio/aislamiento & purificación , Cólera/microbiología , Cambio Climático , Mar del Norte , Océanos y Mares , Plancton/aislamiento & purificación , Estudios Retrospectivos , Tiempo , Vibrio/clasificación , Vibrio/fisiología , Vibrio cholerae/aislamiento & purificación , Vibrio cholerae/fisiología
11.
Adv Mar Biol ; 56: 1-150, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19895974

RESUMEN

The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente/métodos , Movimientos del Aire , Animales , Regiones Antárticas , Regiones Árticas , Atmósfera , Dióxido de Carbono , Ecosistema , Oceanografía , Océanos y Mares , Movimientos del Agua
13.
Nature ; 426(6967): 661-4, 2003 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-14668864

RESUMEN

The Atlantic cod (Gadus morhua L.) has been overexploited in the North Sea since the late 1960s and great concern has been expressed about the decline in cod biomass and recruitment. Here we show that, in addition to the effects of overfishing, fluctuations in plankton have resulted in long-term changes in cod recruitment in the North Sea (bottom-up control). Survival of larval cod is shown to depend on three key biological parameters of their prey: the mean size of prey, seasonal timing and abundance. We suggest a mechanism, involving the match/mismatch hypothesis, by which variability in temperature affects larval cod survival and conclude that rising temperature since the mid-1980s has modified the plankton ecosystem in a way that reduces the survival of young cod.


Asunto(s)
Ecosistema , Peces/fisiología , Plancton/fisiología , Animales , Biomasa , Dieta , Peces/crecimiento & desarrollo , Larva/fisiología , Mar del Norte , Dinámica Poblacional , Estaciones del Año , Agua de Mar , Tasa de Supervivencia , Temperatura
14.
Science ; 296(5573): 1692-4, 2002 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-12040196

RESUMEN

We provide evidence of large-scale changes in the biogeography of calanoid copepod crustaceans in the eastern North Atlantic Ocean and European shelf seas. We demonstrate that strong biogeographical shifts in all copepod assemblages have occurred with a northward extension of more than 10 degrees latitude of warm-water species associated with a decrease in the number of colder-water species. These biogeographical shifts are in agreement with recent changes in the spatial distribution and phenology detected for many taxonomic groups in terrestrial European ecosystems and are related to both the increasing trend in Northern Hemisphere temperature and the North Atlantic Oscillation.


Asunto(s)
Clima , Crustáceos , Ecosistema , Agua de Mar , Zooplancton , Animales , Océano Atlántico , Geografía , Análisis de Componente Principal , Estaciones del Año , Temperatura
15.
Oecologia ; 128(1): 1-14, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28547079

RESUMEN

Climatic oscillations as reflected in atmospheric modes such as the North Atlantic Oscillation (NAO) may be seen as a proxy for regulating forces in aquatic and terrestrial ecosystems. Our review highlights the variety of climate processes related to the NAO and the diversity in the type of ecological responses that different biological groups can display. Available evidence suggests that the NAO influences ecological dynamics in both marine and terrestrial systems, and its effects may be seen in variation at the individual, population and community levels. The ecological responses to the NAO encompass changes in timing of reproduction, population dynamics, abundance, spatial distribution and interspecific relationships such as competition and predator-prey relationships. This indicates that local responses to large-scale changes may be more subtle than previously suggested. We propose that the NAO effects may be classified as three types: direct, indirect and integrated. Such a classification will help the design and interpretation of analyses attempting to relate ecological changes to the NAO and, possibly, to climate in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...