Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 15: 1349426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510941

RESUMEN

This study aimed to investigate the correlation between the passive muscle stiffness of the pectoralis major muscle pars clavicularis (PMc) and shoulder extension range of motion (ROM) in both male and female participants. Thirty-nine (23 male/16 female) physically active and healthy participants volunteered in this study. After a standardized warm-up, the PMc stiffness was tested via shear wave elastography at a slightly stretched position (long muscle length) and in a non-stretched position (short muscle length). Additionally, a custom-made device and 3D motion capture assessed the active shoulder extension ROM. We found a significant moderate and negative relationship between shoulder extension ROM and PMc stiffness at long muscle length (rs = -0.33; p = 0.04) but not at short muscle length (r = -0.23; p = 0.17). Additionally, there was no significant difference between male and female participants in the correlation analyses at both elbow angles. The moderate correlation between PMc stiffness at a slightly stretched position and shoulder extension ROM suggests that additionally, other structures such as nerves/fascia stiffness or even stretch tolerance might be factors that can be related to shoulder extension ROM.

2.
Biol Sport ; 41(2): 115-121, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38524826

RESUMEN

Previous training studies with comprehensive stretching durations have reported that an increase in range of motion (ROM) can be related to decreases in muscle stiffness. Therefore, the purpose of this study was to analyze the association between the passive muscle stiffness of three muscle groups (triceps surae, quadriceps, hamstrings) to the respective joint ROM. Thirty-six healthy male soccer players volunteered in this study. After a standardized warm-up, the muscle stiffness was tested via shear wave elastography in six muscles (gastrocnemius medialis and lateralis, rectus femoris, semitendinosus, semimembranosus, and biceps femoris long head). The hip extension, hip flexion, and ankle dorsiflexion ROM were also assessed with a modified Thomas test, a sit and reach test, and a standing wall push test, respectively. We found significant moderate to large correlations between hip flexion ROM and muscle stiffness for the semimembranosus (rP = -0.43; P = 0.01), biceps femoris long head (rP = -0.45; P = 0.01), and overall hamstring stiffness (rP = -0.50; P < 0.01). No significant correlations were found for triceps surae (rP = -0.12; P = 0.51 to 0.67) and rectus femoris muscle stiffness (rP = 0.25; P = 0.14) with ankle dorsiflexion and hip extension ROM, respectively. We conclude that muscle stiffness is an important contributor to hip flexion ROM, but less important for hip extension or ankle joint ROM. Additional contributors to ROM might be tendon stiffness or stretch/pain tolerance.

3.
J Sports Sci Med ; 22(1): 51-57, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36876179

RESUMEN

Although it is well known that foam rolling (FR) of the lower extremities can increase the range of motion (ROM) of a joint while likely having no detrimental effect on muscle performance, to date, this is not clear if this is the case for the upper body. Therefore, the purpose of this study was to analyze the effects of a 2-min FR intervention of the pectoralis major (PMa) muscle on muscle stiffness of the PMa, shoulder extension ROM, and maximal voluntary isometric contraction (MVIC) peak torque. Thirty-eight (n = 15 females) healthy, physically active participants were randomly assigned to either an intervention (n = 18) or a control group (n = 20). The intervention group performed a 2-min foam ball rolling (FBR) intervention of the PMa muscle (FB-PMa-rolling), while the control group rested for 2 min. Before and after the intervention, muscle stiffness of the PMa was measured with shear wave elastography, while shoulder extension ROM was recorded with a 3D-motion capture system, and shoulder flexion MVIC peak torque was measured with a force sensor. MVIC peak torque decreased in both groups (time effect: p = 0.01; η2 = 0.16), without any difference between groups (interaction effect: p = 0.49, η2 = 0.013). ROM (p = 0.24; η2 = 0.04) and muscle stiffness (FB-PMa-rolling p = 0.86; Z = -0.38; control group p = 0.7, Z = -0.17) did not change due to the intervention. The lack of changes in ROM and muscle stiffness following the FBR intervention might be explained by the small area of applied pressure with the FBR on the PMa muscle. Moreover, the decrease in MVIC peak torque is likely more related to the uncommon test situation of the upper limbs, rather than the FBR intervention itself.


Asunto(s)
Contracción Isométrica , Hombro , Femenino , Humanos , Músculos Pectorales , Torque , Extremidad Superior , Rango del Movimiento Articular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...