Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Cancers (Basel) ; 14(21)2022 Oct 30.
Article En | MEDLINE | ID: mdl-36358775

Patient's regret (PatR) concerning the choice of therapy represents a crucial endpoint for treatment evaluation after radical prostatectomy (RP) for prostate cancer (PCA). This study aims to compare PatR following robot-assisted (RARP) and open surgical approach (ORP). A survey comprising perioperative-functional criteria was sent to 1000 patients in 20 German centers at a median of 15 months after RP. Surgery-related items were collected from participating centers. To calculate PatR differences between approaches, a multivariate regressive base model (MVBM) was established incorporating surgical approach and demographic, center-specific, and tumor-specific criteria not primarily affected by surgical approach. An extended model (MVEM) was further adjusted by variables potentially affected by surgical approach. PatR was based on five validated questions ranging 0−100 (cutoff >15 defined as critical PatR). The response rate was 75.0%. After exclusion of patients with laparoscopic RP or stage M1b/c, the study cohort comprised 277/365 ORP/RARP patients. ORP/RARP patients had a median PatR of 15/10 (p < 0.001) and 46.2%/28.1% had a PatR >15, respectively (p < 0.001). Based on the MVBM, RARP patients showed PatR >15 relative 46.8% less frequently (p < 0.001). Consensual decision making regarding surgical approach independently reduced PatR. With the MVEM, the independent impact of both surgical approach and of consensual decision making was confirmed. This study involving centers of different care levels showed significantly lower PatR following RARP.

2.
Am J Obstet Gynecol ; 198(1): 105.e1-9, 2008 Jan.
Article En | MEDLINE | ID: mdl-17880903

OBJECTIVE: Although the benefits of antenatal glucocorticoids are well known for infants who are born preterm, there is increasing evidence of adverse effects on brain development, which may relate to altered metabolic activity. We have determined the effect of maternal glucocorticoid administration at doses that are used clinically on cerebral substrate metabolism in the preterm ovine fetus. STUDY DESIGN: Chronically instrumented pregnant sheep at 0.85 gestation received 2 intramuscular injections of betamethasone at 170 microg/kg maternal weight (n = 13) or saline (n = 10) 24 hours apart together with a continuous infusion of L-[1-(13)C] leucine to the fetus. Fetal cerebral substrate arteriovenous differences (O2, glucose, leucine, leucine enrichment) and blood flow (fluorescent microspheres) were measured at baseline, 24 hours after the first betamethasone/saline injection (late beta/saline 1), and 4 hours after the second betamethasone/saline injection (early beta/saline 2) to obtain substrate deliveries and fractional extractions. RESULTS: Fetal pH, blood gases, and metabolites were little changed in either group over the course of the study, except for glucose values in the betamethasone animals, which increased 1.4- and 1.9-fold, measured late beta 1 and early beta 2, respectively (both P < .01). Cerebral blood flow, although little changed in the control group or at late beta 1, was decreased at early beta 2 by approximately 30% (P < .05). As such, early beta 2 animals showed a decrease in cerebral O2 delivery of approximately 20% (P = .06) and conversely an increase in cerebral glucose delivery of 1.4- and 1.3-fold at late beta 1 (P < .05) and early beta 2 (P = .08), respectively. Fractional extraction values for these substrates were not changed significantly, which resulted in corresponding decreases in estimated O2 uptake and increases in estimated glucose uptake, such that the glucose/oxygen quotient (as an index of glucose oxidative metabolism) measured 1.6 at early beta 2, which was considerably greater than baseline values at 1.1 (P < .05). Fractional extraction values for leucine and leucine enrichment averaged 2%-3%; although somewhat higher in the betamethasone animals, none of the between or within group differences were significant. CONCLUSION: Fetal cerebral metabolism in the preterm ovine fetus is altered by antenatal glucocorticoid administration, which is comparable with that used in human pregnancy, and includes an acute decrease in cerebral blood flow and a probable increase in anaerobic glucose metabolism. Although likely of short duration in conjunction with peak glucocorticoid levels, these metabolic effects may place the developing brain at added risk for superimposed hypoxic injury.


Betamethasone/toxicity , Brain/embryology , Brain/metabolism , Cerebrovascular Circulation/drug effects , Glucocorticoids/toxicity , Maternal Exposure , Animals , Brain/drug effects , Disease Models, Animal , Female , Gestational Age , Injections, Intramuscular , Leucine/blood , Oxygen Consumption/physiology , Pregnancy , Random Allocation , Reference Values , Sheep, Domestic
...