Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Nat Commun ; 14(1): 6756, 2023 10 24.
Article En | MEDLINE | ID: mdl-37875466

High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of response. Here we present a framework to predict the response of HGSOC patients to NACT integrating baseline clinical, blood-based, and radiomic biomarkers extracted from all primary and metastatic lesions. We use an ensemble machine learning model trained to predict the change in total disease volume using data obtained at diagnosis (n = 72). The model is validated in an internal hold-out cohort (n = 20) and an independent external patient cohort (n = 42). In the external cohort the integrated radiomics model reduces the prediction error by 8% with respect to the clinical model, achieving an AUC of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model. Our results emphasize the value of including radiomics data in integrative models of treatment response and provide methods for developing new biomarker-based clinical trials of NACT in HGSOC.


Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Neoadjuvant Therapy/methods , Biomarkers, Tumor/genetics
2.
Nat Commun ; 14(1): 6505, 2023 10 16.
Article En | MEDLINE | ID: mdl-37845213

High-grade serous ovarian carcinoma (HGSOC) is characterised by poor outcome and extreme chromosome instability (CIN). Therapies targeting centrosome amplification (CA), a key mediator of chromosome missegregation, may have significant clinical utility in HGSOC. However, the prevalence of CA in HGSOC, its relationship to genomic biomarkers of CIN and its potential impact on therapeutic response have not been defined. Using high-throughput multi-regional microscopy on 287 clinical HGSOC tissues and 73 cell lines models, here we show that CA through centriole overduplication is a highly recurrent and heterogeneous feature of HGSOC and strongly associated with CIN and genome subclonality. Cell-based studies showed that high-prevalence CA is phenocopied in ovarian cancer cell lines, and that high CA is associated with increased multi-treatment resistance; most notably to paclitaxel, the commonest treatment used in HGSOC. CA in HGSOC may therefore present a potential driver of tumour evolution and a powerful biomarker for response to standard-of-care treatment.


Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/pathology , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Centrosome/metabolism , Cystadenocarcinoma, Serous/genetics
4.
Nat Commun ; 14(1): 4387, 2023 07 20.
Article En | MEDLINE | ID: mdl-37474499

The drivers of recurrence and resistance in ovarian high grade serous carcinoma remain unclear. We investigate the acquisition of resistance by collecting tumour biopsies from a cohort of 276 women with relapsed ovarian high grade serous carcinoma in the BriTROC-1 study. Panel sequencing shows close concordance between diagnosis and relapse, with only four discordant cases. There is also very strong concordance in copy number between diagnosis and relapse, with no significant difference in purity, ploidy or focal somatic copy number alterations, even when stratified by platinum sensitivity or prior chemotherapy lines. Copy number signatures are strongly correlated with immune cell infiltration, whilst diagnosis samples from patients with primary platinum resistance have increased rates of CCNE1 and KRAS amplification and copy number signature 1 exposure. Our data show that the ovarian high grade serous carcinoma genome is remarkably stable between diagnosis and relapse and acquired chemotherapy resistance does not select for common copy number drivers.


Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , DNA Copy Number Variations/genetics , Neoplasm Recurrence, Local/genetics , Mutation , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology
5.
Front Oncol ; 13: 1085874, 2023.
Article En | MEDLINE | ID: mdl-36860310

Background: High-Grade Serous Ovarian Carcinoma (HGSOC) is the most prevalent and lethal subtype of ovarian cancer, but has a paucity of clinically-actionable biomarkers due to high degrees of multi-level heterogeneity. Radiogenomics markers have the potential to improve prediction of patient outcome and treatment response, but require accurate multimodal spatial registration between radiological imaging and histopathological tissue samples. Previously published co-registration work has not taken into account the anatomical, biological and clinical diversity of ovarian tumours. Methods: In this work, we developed a research pathway and an automated computational pipeline to produce lesion-specific three-dimensional (3D) printed moulds based on preoperative cross-sectional CT or MRI of pelvic lesions. Moulds were designed to allow tumour slicing in the anatomical axial plane to facilitate detailed spatial correlation of imaging and tissue-derived data. Code and design adaptations were made following each pilot case through an iterative refinement process. Results: Five patients with confirmed or suspected HGSOC who underwent debulking surgery between April and December 2021 were included in this prospective study. Tumour moulds were designed and 3D-printed for seven pelvic lesions, covering a range of tumour volumes (7 to 133 cm3) and compositions (cystic and solid proportions). The pilot cases informed innovations to improve specimen and subsequent slice orientation, through the use of 3D-printed tumour replicas and incorporation of a slice orientation slit in the mould design, respectively. The overall research pathway was compatible with implementation within the clinically determined timeframe and treatment pathway for each case, involving multidisciplinary clinical professionals from Radiology, Surgery, Oncology and Histopathology Departments. Conclusions: We developed and refined a computational pipeline that can model lesion-specific 3D-printed moulds from preoperative imaging for a variety of pelvic tumours. This framework can be used to guide comprehensive multi-sampling of tumour resection specimens.

6.
Expert Rev Mol Med ; 23: e6, 2021 06 09.
Article En | MEDLINE | ID: mdl-34103115

The introduction of cyclin-dependent kinase 4/6 inhibitors (CKIs) has marked a major development in the standard treatment of advanced breast cancer. Extensive preclinical, translational and clinical research efforts into CKI agents are ongoing, and clinical application of this class of systemic anti-cancer therapy is anticipated to expand beyond metastatic breast cancer treatment. Emerging evidence indicates that mechanisms by which CKI agents exert their therapeutic effect transcend their initially expected impacts on cell cycle control into the realms of cancer immunology and metabolism. The recent expansion in our understanding of the multifaceted impact of CKIs on tumour biology has the potential to improve clinical study design, therapeutic strategies and ultimately patient outcomes. This review contextualises the current status of CKI therapy by providing an overview of the original and emerging insights into mechanisms of action and the evidence behind their current routine use in breast cancer management. Recent preclinical and clinical studies into CKIs across tumour types are discussed, including a synthesis of the more than 300 clinical trials of CKI-combination treatments registered as of November 2020. Key challenges and opportunities anticipated in the 2020s are explored, including treatment resistance, combination therapy strategies and potential biomarker development.


Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase Inhibitor Proteins/therapeutic use , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/therapeutic use , Female , Humans
7.
Semin Cancer Biol ; 77: 67-82, 2021 12.
Article En | MEDLINE | ID: mdl-33607245

Epithelial ovarian carcinoma (EOC) encompasses distinct histological, molecular and genomic entities that determine intrinsic sensitivity to platinum-based chemotherapy. Current management of each subtype is determined by factors including tumour grade and stage, but only a small number of biomarkers can predict treatment response. The recent incorporation of PARP inhibitors into routine clinical practice has underscored the need to personalise ovarian cancer treatment based on tumour biology. In this article, we review the strengths and limitations of predictive biomarkers in current clinical practice and highlight integrative strategies that may inform the development of future personalised medicine programs and composite biomarkers.


Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/analysis , Carcinoma, Ovarian Epithelial/drug therapy , Platinum Compounds/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Drug Resistance, Neoplasm , Female , Humans , Precision Medicine/methods , Treatment Outcome
...