Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Nat Rev Cancer ; 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38871881

The leptomeninges, the cerebrospinal-fluid-filled tissues surrounding the central nervous system, play host to various pathologies including infection, neuroinflammation and malignancy. Spread of systemic cancer into this space, termed leptomeningeal metastasis, occurs in 5-10% of patients with solid tumours and portends a bleak clinical prognosis. Previous, predominantly descriptive, clinical studies have provided few insights. Recent development of preclinical leptomeningeal metastasis models, alongside genomic, transcriptomic and proteomic sequencing efforts, has provided groundwork for mechanistic understanding and identification of long-needed therapeutic targets. Although previously understood as an anatomically isolated compartment, the leptomeninges are increasingly appreciated as a major conduit of communication between the systemic circulation and the central nervous system. Despite the unique nature of the leptomeningeal microenvironment, the general principles of metastasis hold true: cells metastasizing to the leptomeninges must gain access to the new environment, survive within the space and evade the immune system. The study of leptomeningeal metastasis has the potential to uncover novel site-specific metastatic principles and illuminate the physiology of the leptomeningeal space. In this Review, we provide a biology-focused overview of how metastatic cells reach the leptomeninges, thrive in this nutritionally sparse environment and evade the detection of the omnipresent immune system.

2.
Nat Biotechnol ; 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565973

A key challenge of analyzing data from high-resolution spatial profiling technologies is to suitably represent the features of cellular neighborhoods or niches. Here we introduce the covariance environment (COVET), a representation that leverages the gene-gene covariate structure across cells in the niche to capture the multivariate nature of cellular interactions within it. We define a principled optimal transport-based distance metric between COVET niches that scales to millions of cells. Using COVET to encode spatial context, we developed environmental variational inference (ENVI), a conditional variational autoencoder that jointly embeds spatial and single-cell RNA sequencing data into a latent space. ENVI includes two decoders: one to impute gene expression across the spatial modality and a second to project spatial information onto single-cell data. ENVI can confer spatial context to genomics data from single dissociated cells and outperforms alternatives for imputing gene expression on diverse spatial datasets.

3.
bioRxiv ; 2023 Mar 20.
Article En | MEDLINE | ID: mdl-36993586

Metastasis to the cerebrospinal fluid (CSF)-filled leptomeninges, or leptomeningeal metastasis (LM), represents a fatal complication of cancer. Proteomic and transcriptomic analyses of human CSF reveal a substantial inflammatory infiltrate in LM. We find the solute and immune composition of CSF in the setting of LM changes dramatically, with notable enrichment in IFN-γ signaling. To investigate the mechanistic relationships between immune cell signaling and cancer cells within the leptomeninges, we developed syngeneic lung, breast, and melanoma LM mouse models. Here we show that transgenic host mice, lacking IFN-γ or its receptor, fail to control LM growth. Overexpression of Ifng through a targeted AAV system controls cancer cell growth independent of adaptive immunity. Instead, leptomeningeal IFN-γ actively recruits and activates peripheral myeloid cells, generating a diverse spectrum of dendritic cell subsets. These migratory, CCR7+ dendritic cells orchestrate the influx, proliferation, and cytotoxic action of natural killer cells to control cancer cell growth in the leptomeninges. This work uncovers leptomeningeal-specific IFN-γ signaling and suggests a novel immune-therapeutic approach against tumors within this space.

4.
Sci Rep ; 13(1): 4889, 2023 03 25.
Article En | MEDLINE | ID: mdl-36966193

The distribution of fluorescence signals measured with flow cytometry can be influenced by several factors, including qualitative and quantitative properties of the used fluorochromes, optical properties of the detection system, as well as the variability within the analyzed cell population itself. Most of the single cell samples prepared from in vitrocultures or clinical specimens contain a variable cell cycle component. Cell cycle, together with changes in the cell size, are two of the factors that alter the functional properties of analyzed cells and thus affect the interpretation of obtained results. Here, we describe the association between cell cycle status and cell size, and the variability in the distribution of fluorescence intensity as determined with flow cytometry, at population scale. We show that variability in the distribution of background and specific fluorescence signals is related to the cell cycle state of the selected population, with the 10% low fluorescence signal fraction enriched mainly in cells in their G0/G1 cell cycle phase, and the 10% high fraction containing cells mostly in the G2/M phase. Therefore we advise using caution and additional experimental validation when comparing populations defined by fractions at both ends of fluorescence signal distribution to avoid biases caused by the effect of cell cycle and cell size.


G2 Phase , Flow Cytometry/methods , Cell Division , Cell Cycle/physiology , Cell Size
5.
Mol Oncol ; 17(6): 1024-1040, 2023 Jun.
Article En | MEDLINE | ID: mdl-36550781

Triple-negative breast cancer (TNBC) is an aggressive and complex subtype of breast cancer that lacks targeted therapy. TNBC manifests characteristic, extensive intratumoral heterogeneity that promotes disease progression and influences drug response. Single-cell techniques in combination with next-generation computation provide an unprecedented opportunity to identify molecular events with therapeutic potential. Here, we describe the generation of a comprehensive mass cytometry panel for multiparametric detection of 23 phenotypic markers and 13 signaling molecules. This single-cell proteomic approach allowed us to explore the landscape of TNBC heterogeneity, with particular emphasis on the tumor microenvironment. We prospectively profiled freshly resected tumors from 26 TNBC patients. These tumors contained phenotypically distinct subpopulations of cancer and stromal cells that were associated with the patient's clinical status at the time of surgery. We further classified the epithelial-mesenchymal plasticity of tumor cells, and molecularly defined phenotypically diverse populations of tumor-associated stroma. Furthermore, in a retrospective tissue-microarray TNBC cohort, we showed that the level of CD97 at the time of surgery has prognostic potential.


Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Proteomics , Retrospective Studies , Signal Transduction , Stromal Cells/metabolism , Cell Line, Tumor , Tumor Microenvironment
6.
Methods Mol Biol ; 2543: 99-111, 2022.
Article En | MEDLINE | ID: mdl-36087262

Multicolor flow cytometry allows for analysis of tens of cellular parameters in millions of cells at a single-cell resolution within minutes. The lack of technologies that would facilitate feasible and relatively cheap profiling of such a number of cells with an antibody-based approach led us to the development of a high-throughput cytometry-based platform for surface profiling. We coupled the fluorescent cell barcoding with preexisting, commercially available screening tools to analyze cell surface fingerprint at a large scale. This powerful approach will help to identify novel biomarkers and druggable targets and facilitate the discovery of new concepts in immunology, oncology, and developmental biology.


Antigens, Surface , Research , Biomarkers/analysis , Flow Cytometry , Fluorescent Dyes
7.
Tissue Eng Regen Med ; 19(5): 1033-1050, 2022 10.
Article En | MEDLINE | ID: mdl-35670910

BACKGROUND: The progenitors to lung airway epithelium that are capable of long-term propagation may represent an attractive source of cells for cell-based therapies, disease modeling, toxicity testing, and others. Principally, there are two main options for obtaining lung epithelial progenitors: (i) direct isolation of endogenous progenitors from human lungs and (ii) in vitro differentiation from some other cell type. The prime candidates for the second approach are pluripotent stem cells, which may provide autologous and/or allogeneic cell resource in clinically relevant quality and quantity. METHODS: By exploiting the differentiation potential of human embryonic stem cells (hESC), here we derived expandable lung epithelium (ELEP) and established culture conditions for their long-term propagation (more than 6 months) in a monolayer culture without a need of 3D culture conditions and/or cell sorting steps, which minimizes potential variability of the outcome. RESULTS: These hESC-derived ELEP express NK2 Homeobox 1 (NKX2.1), a marker of early lung epithelial lineage, display properties of cells in early stages of surfactant production and are able to differentiate to cells exhibitting molecular and morphological characteristics of both respiratory epithelium of airway and alveolar regions. CONCLUSION: Expandable lung epithelium thus offer a stable, convenient, easily scalable and high-yielding cell source for applications in biomedicine.


Human Embryonic Stem Cells , Cell Differentiation , Epithelium , Humans , Lung/metabolism , Surface-Active Agents/metabolism
8.
Cancer Rep (Hoboken) ; 5(4): e1236, 2022 04.
Article En | MEDLINE | ID: mdl-33372403

BACKGROUND: Leptomeningeal metastasis (LM), or spread of cancer cells into the cerebrospinal fluid (CSF), is characterized by a rapid onset of debilitating neurological symptoms and markedly bleak prognosis. The lack of reproducible in vitro and in vivo models has prevented the development of novel, LM-specific therapies. Although LM allows for longitudinal sampling of floating cancer cells with a spinal tap, attempts to culture patient-derived leptomeningeal cancer cells have not been successful. AIM: We, therefore, employ leptomeningeal derivatives of human breast and lung cancer cell lines that reproduce both floating and adherent phenotypes of human LM in vivo and in vitro. METHODS AND RESULTS: We introduce a trypsin/EDTA-based fractionation method to reliably separate the two cell subsets and demonstrate that in vitro cultured floating cells have decreased proliferation rate, lower ATP content, and are enriched in distinct metabolic signatures. Long-term fractionation and transcriptomic analysis suggest high degree plasticity between the two phenotypes in vitro. Floating cells colonize mouse leptomeninges more rapidly and associate with shortened survival. In addition, patients harboring LM diagnosed with CSF disease alone succumbed to the disease earlier than patients with adherent (MRI positive) disease. CONCLUSION: Together, these data support mechanistic evidence of a metabolic adaptation that allows cancer cells to thrive in their natural environment but leads to death in vitro.


Lung Neoplasms , Meningeal Carcinomatosis , Animals , Biomarkers, Tumor , Cell Line, Tumor , Humans , Lung Neoplasms/pathology , Meningeal Carcinomatosis/cerebrospinal fluid , Meningeal Carcinomatosis/secondary , Mice , Phenotype
9.
J Neuroimmunol ; 361: 577727, 2021 12 15.
Article En | MEDLINE | ID: mdl-34688068

Meninges, or the membranous coverings of the brain and spinal cord, play host to dozens of morbid pathologies. In this study we provide a method to isolate the leptomeningeal cell layer, identify leptomeninges in histologic slides, and maintain leptomeningeal fibroblasts in in vitro culture. Using an array of transcriptomic, histological, and cytometric analyses, we identified ICAM1 and SLC38A2 as two novel markers of leptomeningeal cells in vivo and in vitro. Our results confirm the fibroblastoid nature of leptomeningeal cells and their ability to form a sheet-like layer that covers the brain and spine parenchyma. These findings will enable researchers in central nervous system barriers to describe leptomeningeal cell functions in health and disease.


Fibroblasts/cytology , Meninges/cytology , Adult , Aged , Amino Acid Transport System A/analysis , Amino Acid Transport System A/biosynthesis , Amino Acid Transport System A/genetics , Animals , Base Sequence , Biomarkers , Cell Separation , Cells, Cultured , Child, Preschool , Female , Fibroblasts/metabolism , Humans , Intercellular Adhesion Molecule-1/analysis , Intercellular Adhesion Molecule-1/biosynthesis , Intercellular Adhesion Molecule-1/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microdissection , Middle Aged , Primary Cell Culture , Staining and Labeling/methods , Transcriptome
11.
Cancers (Basel) ; 13(9)2021 May 02.
Article En | MEDLINE | ID: mdl-34063254

Triple-negative breast cancer (TNBC) is a subtype of breast carcinoma known for its unusually aggressive behavior and poor clinical outcome. Besides the lack of molecular targets for therapy and profound intratumoral heterogeneity, the relatively quick overt metastatic spread remains a major obstacle in effective clinical management. The metastatic colonization of distant sites by primary tumor cells is affected by the microenvironment, epigenetic state of particular subclones, and numerous other factors. One of the most prominent processes contributing to the intratumoral heterogeneity is an epithelial-mesenchymal transition (EMT), an evolutionarily conserved developmental program frequently hijacked by tumor cells, strengthening their motile and invasive features. In response to various intrinsic and extrinsic stimuli, malignant cells can revert the EMT state through the mesenchymal-epithelial transition (MET), a process that is believed to be critical for the establishment of macrometastasis at secondary sites. Notably, cancer cells rarely undergo complete EMT and rather exist in a continuum of E/M intermediate states, preserving high levels of plasticity, as demonstrated in primary tumors and, ultimately, in circulating tumor cells, representing a simplified element of the metastatic cascade. In this review, we focus on cellular drivers underlying EMT/MET phenotypic plasticity and its detrimental consequences in the context of TNBC cancer.

12.
Cell Rep ; 35(13): 109302, 2021 06 29.
Article En | MEDLINE | ID: mdl-34192534

Medulloblastoma (MB) is a malignant pediatric brain tumor arising in the cerebellum. Although abnormal GABAergic receptor activation has been described in MB, studies have not yet elucidated the contribution of receptor-independent GABA metabolism to MB pathogenesis. We find primary MB tumors globally display decreased expression of GABA transaminase (ABAT), the protein responsible for GABA metabolism, compared with normal cerebellum. However, less aggressive WNT and SHH subtypes express higher ABAT levels compared with metastatic G3 and G4 tumors. We show that elevated ABAT expression results in increased GABA catabolism, decreased tumor cell proliferation, and induction of metabolic and histone characteristics mirroring GABAergic neurons. Our studies suggest ABAT expression fluctuates depending on metabolite changes in the tumor microenvironment, with nutrient-poor conditions upregulating ABAT expression. We find metastatic MB cells require ABAT to maintain viability in the metabolite-scarce cerebrospinal fluid by using GABA as an energy source substitute, thereby facilitating leptomeningeal metastasis formation.


4-Aminobutyrate Transaminase/metabolism , Cerebellar Neoplasms/cerebrospinal fluid , Cerebellar Neoplasms/enzymology , Medulloblastoma/cerebrospinal fluid , Medulloblastoma/enzymology , Meninges/pathology , Tumor Microenvironment , Acetylation , Animals , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Cell Survival , Female , Histone Deacetylases/metabolism , Histones/metabolism , Lysine/metabolism , Meningeal Neoplasms/secondary , Mice, Nude , Mitochondria/metabolism , Neurons/metabolism , Oxidative Phosphorylation , Phenotype , Rats , gamma-Aminobutyric Acid/metabolism
13.
Immunity ; 54(5): 1037-1054.e7, 2021 05 11.
Article En | MEDLINE | ID: mdl-33756102

Immune cells identify and destroy tumors by recognizing cellular traits indicative of oncogenic transformation. In this study, we found that myocardin-related transcription factors (MRTFs), which promote migration and metastatic invasion, also sensitize cancer cells to the immune system. Melanoma and breast cancer cells with high MRTF expression were selectively eliminated by cytotoxic lymphocytes in mouse models of metastasis. This immunosurveillance phenotype was further enhanced by treatment with immune checkpoint blockade (ICB) antibodies. We also observed that high MRTF signaling in human melanoma is associated with ICB efficacy in patients. Using biophysical and functional assays, we showed that MRTF overexpression rigidified the filamentous actin cytoskeleton and that this mechanical change rendered mouse and human cancer cells more vulnerable to cytotoxic T lymphocytes and natural killer cells. Collectively, these results suggest that immunosurveillance has a mechanical dimension, which we call mechanosurveillance, that is particularly relevant for the targeting of metastatic disease.


Lymphocytes/immunology , Neoplasms/immunology , Actin Cytoskeleton/immunology , Actins/immunology , Animals , Cell Communication/immunology , Cell Line , Cell Line, Tumor , Cell Movement/immunology , Female , HEK293 Cells , Humans , Killer Cells, Natural/immunology , MCF-7 Cells , Male , Mice , Mice, Inbred C57BL , Signal Transduction/immunology , Transcription Factors/immunology
14.
Cancer Cell ; 39(2): 276-283.e3, 2021 02 08.
Article En | MEDLINE | ID: mdl-33508216

SARS-CoV-2 infection induces a wide spectrum of neurologic dysfunction that emerges weeks after the acute respiratory infection. To better understand this pathology, we prospectively analyzed of a cohort of cancer patients with neurologic manifestations of COVID-19, including a targeted proteomics analysis of the cerebrospinal fluid. We find that cancer patients with neurologic sequelae of COVID-19 harbor leptomeningeal inflammatory cytokines in the absence of viral neuroinvasion. The majority of these inflammatory mediators are driven by type II interferon and are known to induce neuronal injury in other disease states. In these patients, levels of matrix metalloproteinase-10 within the spinal fluid correlate with the degree of neurologic dysfunction. Furthermore, this neuroinflammatory process persists weeks after convalescence from acute respiratory infection. These prolonged neurologic sequelae following systemic cytokine release syndrome lead to long-term neurocognitive dysfunction. Our findings suggest a role for anti-inflammatory treatment(s) in the management of neurologic complications of COVID-19 infection.


Brain Diseases/etiology , COVID-19/complications , Inflammation Mediators/cerebrospinal fluid , Neoplasms/virology , Angiotensin-Converting Enzyme 2/metabolism , Brain/diagnostic imaging , Brain/pathology , COVID-19/epidemiology , Cerebrospinal Fluid Proteins/analysis , Comorbidity , Cytokines/cerebrospinal fluid , Humans , Neoplasms/complications , Neoplasms/epidemiology , Neuroimaging
15.
Cancers (Basel) ; 12(11)2020 Nov 11.
Article En | MEDLINE | ID: mdl-33187148

Trophoblast cell surface antigen 2 (Trop2) is a widely expressed glycoprotein and an epithelial cell adhesion molecule (EpCAM) family member. Although initially identified as a transmembrane protein, other subcellular localizations and processed forms were described. Its congenital mutations cause a gelatinous drop-like corneal dystrophy, a disease characterized by loss of barrier function in corneal epithelial cells. Trop2 is considered a stem cell marker and its expression associates with regenerative capacity in various tissues. Trop2 overexpression was described in tumors of different origins; however, functional studies revealed both oncogenic and tumor suppressor roles. Nevertheless, therapeutic potential of Trop2 was recognized and clinical studies with drug-antibody conjugates have been initiated in various cancer types. One of these agents, sacituzumab govitecan, has been recently granted an accelerated approval for therapy of metastatic triple-negative breast cancer. In this article, we review the current knowledge about the yet controversial function of Trop2 in homeostasis and pathology.

16.
medRxiv ; 2020 Sep 18.
Article En | MEDLINE | ID: mdl-32995805

SARS-CoV-2 infection induces a wide spectrum of neurologic dysfunction. Here we show that a particularly vulnerable population with neurologic manifestations of COVID-19 harbor an influx of inflammatory cytokines within the cerebrospinal fluid in the absence of viral neuro-invasion. The majority of these inflammatory mediators are driven by type 2 interferon and are known to induce neuronal injury in other disease models. Levels of matrix metalloproteinase-10 within the spinal fluid correlate with the degree of neurologic dysfunction. Furthermore, this neuroinflammatory process persists weeks following convalescence from the acute respiratory infection. These prolonged neurologic sequelae following a systemic cytokine release syndrome lead to long-term neurocognitive dysfunction with a wide range of phenotypes.

17.
Sci Rep ; 10(1): 11396, 2020 07 09.
Article En | MEDLINE | ID: mdl-32647280

The epithelial-mesenchymal plasticity, in tight association with stemness, contributes to the mammary gland homeostasis, evolution of early neoplastic lesions and cancer dissemination. Focused on cell surfaceome, we used mouse models of pre-neoplastic mammary epithelial and cancer stem cells to reveal the connection between cell surface markers and distinct cell phenotypes. We mechanistically dissected the TGF-ß family-driven regulation of Sca-1, one of the most commonly used adult stem cell markers. We further provided evidence that TGF-ß disrupts the lineage commitment and promotes the accumulation of tumor-initiating cells in pre-neoplastic cells.


Ataxin-1/metabolism , Breast Neoplasms/pathology , Mammary Neoplasms, Experimental/pathology , Neoplastic Stem Cells/pathology , Transforming Growth Factor beta/metabolism , Animals , Breast Neoplasms/genetics , Cell Line, Tumor/transplantation , Cell Plasticity/genetics , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/genetics , Mice , Receptor, ErbB-2/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction/genetics , Transforming Growth Factor beta/genetics
18.
Science ; 369(6501): 276-282, 2020 07 17.
Article En | MEDLINE | ID: mdl-32675368

The tumor microenvironment plays a critical regulatory role in cancer progression, especially in central nervous system metastases. Cancer cells within the cerebrospinal fluid (CSF)-filled leptomeninges face substantial microenvironmental challenges, including inflammation and sparse micronutrients. To investigate the mechanism by which cancer cells in these leptomeningeal metastases (LM) overcome these constraints, we subjected CSF from five patients with LM to single-cell RNA sequencing. We found that cancer cells, but not macrophages, within the CSF express the iron-binding protein lipocalin-2 (LCN2) and its receptor SCL22A17. These macrophages generate inflammatory cytokines that induce cancer cell LCN2 expression but do not generate LCN2 themselves. In mouse models of LM, cancer cell growth is supported by the LCN2/SLC22A17 system and is inhibited by iron chelation therapy. Thus, cancer cells appear to survive in the CSF by outcompeting macrophages for iron.


Iron/metabolism , Lipocalin-2/cerebrospinal fluid , Meningeal Neoplasms , Animals , Humans , Macrophages/metabolism , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/secondary , Mice , Tumor Microenvironment
19.
Stem Cell Res ; 46: 101844, 2020 07.
Article En | MEDLINE | ID: mdl-32590255

Deciphering the properties of adult stem cells is crucial for understanding of their role in healthy tissue and in cancer progression as well. Both stem cells and cancer stem cells have shown association with epithelial-to-mesenchymal transition (EMT) in various tissue types. Aiming to investigate the epithelial and mesenchymal phenotypic traits in adult mouse prostate, we sorted subpopulations of basal prostate stem cells (mPSCs) and assessed the expression levels of EMT regulators and markers with custom-designed gene expression array. The population of mPSCs defined by a Lin-/Sca-1+CD49fhi/Trop-2+ (LSC Trop-2+) surface phenotype was enriched in mesenchymal markers, especially EMT master regulator Slug, encoded by the Snai2 gene. To further dissect the role of Slug in mPSCs, we used transgenic Snai2tm1.1Wbg reporter mouse strain. Using this model, we confirmed the presence of mesenchymal traits and increase of organoid forming capacity in Slug+ population of mPSCs. The Slug+-derived organoids comprised all prostate epithelial cell types - basal, luminal, and neuroendocrine. Collectively, these data uncover the important role of Slug expression in the physiology of mouse prostate stem cells.


Epithelial-Mesenchymal Transition , Prostate , Animals , Cell Line, Tumor , Cell Movement , Epithelial Cells , Male , Mice , Snail Family Transcription Factors/genetics
20.
Sci Rep ; 9(1): 5695, 2019 04 05.
Article En | MEDLINE | ID: mdl-30952903

Skp2 is a crucial component of SCFSkp2 E3 ubiquitin ligase and is often overexpressed in various types of cancer, including prostate cancer (PCa). The epithelial-to-mesenchymal transition (EMT) is involved in PCa progression. The acquisition of a mesenchymal phenotype that results in a cancer stem cell (CSC) phenotype in PCa was described. Therefore, we aimed to investigate the expression and localization of Skp2 in clinical samples from patients with PCa, the association of Skp2 with EMT status, and the role of Skp2 in prostate CSC. We found that nuclear expression of Skp2 was increased in patients with PCa compared to those with benign hyperplasia, and correlated with high Gleason score in PCa patients. Increased Skp2 expression was observed in PCa cell lines with mesenchymal and CSC-like phenotype compared to their epithelial counterparts. Conversely, the CSC-like phenotype was diminished in cells in which SKP2 expression was silenced. Furthermore, we observed that Skp2 downregulation led to the decrease in subpopulation of CD44+CD24- cancer stem-like cells. Finally, we showed that high expression levels of both CD24 and CD44 were associated with favorable recurrence-free survival for PCa patients. This study uncovered the Skp2-mediated CSC-like phenotype with oncogenic functions in PCa.


Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/physiology , Prostatic Neoplasms/genetics , S-Phase Kinase-Associated Proteins/genetics , Animals , CD24 Antigen/genetics , Cell Line, Tumor , Humans , Hyaluronan Receptors/genetics , Male , Mice , Mice, Nude , Neoplasm Grading , Neoplastic Stem Cells/metabolism , PC-3 Cells , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/physiopathology , Xenograft Model Antitumor Assays
...