Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Talanta ; 282: 126960, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362038

RESUMEN

Accurate analysis of multiple microRNA (miRNA) levels is significantly valuable for early diagnosis of colorectal cancer noninvasively considering the miRNA expression is highly relevant to the occurrence and progression of cancer. However, the low abundance and high sequence homology of miRNAs make their precise determination extremely challenging. Here, we developed a universal and programmable diagnostic strategy allowing for analyzing multiple colorectal cancer-associated miRNAs. The system combined sequentially programmable rolling circle transcription (RCT) and the CRISPR/Cas12a system with high trans-cleavage activity to achieve highly sensitive and specific detection of four target miRNAs. Owing to the remarkable performance of universal RCT-Cas12a strategy, this biosensor could detect miR-21, miR-17, miR-31 and miR-92a with a LOD of 2.1, 1.6, 3.7 and 1.0 pM, respectively. This strategy had a unique advantage in distinguishing human normal colon epithelial cells lines (NCM460) from human colon cancer cells (HT29). In particular, the designed system exhibited superior analytical capability in distinguishing paracancerous and colorectal cancer tissues from patients undergoing colorectal cancer surgery. This arbitrarily programmable, scalable, fast and specific strategy potentially offered an attractive alternative to handle varied challenges encountered with CRISPR-based systems, and held immense promise in scientific research and clinical applications.

2.
J Photochem Photobiol B ; 260: 113039, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39362112

RESUMEN

An integrated system for in vivo multi-spectral imaging (MSI) and Raman spectroscopy was developed to understand the external morphology and internal molecular information of biological tissues. The achieved MSI images were reconstructed by eighteen separated images from 400 nm to 760 nm, whose illumination bands were selected with six tri-channel band filters. Based on the spectral analysis algorithms, the spatial distribution patterns of blood volume, blood oxygen content and tissue scatterer volume fraction were visualized. In vivo Raman spectral measurements were executed by inserting specially designed optical probe into instrumental channel of endoscope. By this way, the molecular composition at selected sampling points could be identified with its fingerprint spectral information under the guidance of molecular imaging modality. Therefore, both structural and compositional features of intestinal membrane could be addressed without labeling and continuously. The achieved results testified that our presented methodology reveals insights not easily extracted from either MSI or Raman spectroscopy individually, which brings the enrichment of biological and chemical meanings for future in vivo studies.

3.
Int J Biol Macromol ; 279(Pt 3): 135223, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241999

RESUMEN

Laminaria digitata is a high-quality seaweed resource that is widely cultured and has good application prospects. In this study, Laminaria digitata fucoidan (LF) was extracted from Laminaria digitata, and purified using DEAE-Sepharose Fast Flow gel column to obtain four different grades. Among those, LF4 (Mw:165 kDa), mainly composed of fucose(56.80 %), had the highest total sugar (66.91 %) and sulfate (17.07 %) content. FT-RT and NMR results showed that LF4 was mainly composed of galactosylated galactofucose, and has a sulfate group attached to fucose C4. With the animal experimentation, it was revealed that hyperlipidaemic mice had significantly higher levels of TC (5.52 mmol/L), TG (2.28 mmol/L) and LDL-C (5.12 mmol/L) and significantly lower levels of HDL-C (2 mmol/L). However, LF had the efficacy in modulating the lipid metabolism disturbances induced by hyperlipidemia, as well as the ability to regulate cholesterol transport in serum. Moreover, it regulated AMPK/ACC, PPAR-α/LAXRa, Nrf2/Nqo1, TLR4/NF-κB signaling pathway genes and proteins expression in the liver. In addition, it promoted the production of beneficial short-chain fatty acids (SCFAs) while improving the composition and structure of gut microbiota, including balancing the abundance of Bacteroidota, Firmicutes, Muribaculaceae, Alloprevotella, Escherichia-Shigella, Prevotella and NK4A136. The results clearly indicated that LF4 could significantly ameliorate hyperlipidemia, suggesting its prospective application as a functional food.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125135, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39299073

RESUMEN

Mercury ion (Hg2+) pose a significant hazard to the natural environment. Conventional techniques like Inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy, among others, pose some disadvantages as they demand a lot of money, need trained employees, and cannot provide on-site detection in real-time. A smartphone sensing technique based on silicon quantum dots (Si-QDs) was presented to detect Hg2+ in the environment without the usage of sophisticated equipment. Meanwhile, the technology was built by utilizing a smartphone to capture gray values of fluorescent images of the Si-QDs-Hg2+ system. Microwave-assisted Si-QDs with tiny particle size, high fluorescence, and good optical stability were created. The fluorescence of the Si-QDs was gradually quenched by raising the Hg2+ concentration from 0.5 µmol/L to 5.0 µmol/L for fluorescent detection with a detection limit of 28 nmol/L. The 94.8-97.1 % recovery demonstrated the viability of the Si-QDs approach for detecting Hg2+. Meanwhile, a smartphone sensing strategy was built by recording the gray value of the fluorescent images of the Si-QDs-Hg2+ systems using a smartphone, and the detection limit of the established approach was 3 nmol/L. The accuracy and reliability of the smartphone strategy were verified with the recovery rates of 80.3-92.5 % in tap water and 87.6-109 % in river water. Electron transfer quenching mechanism between Si-QDs and Hg2+ was evidenced by ultraviolet-visible spectroscopy, fluorescent decay curves, cyclic voltammetry, and Zeta potential. Finally, the suggested approach was used to detect Hg2+ in water samples from various environments.

5.
Foods ; 13(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39335947

RESUMEN

In this study, a quantitative method based on fluorescein isothiocyanate (FITC)-labelled Hizikia fusiforme polyphenol-polysaccharide complex (HPC) and its purified fractions (PC1, PC4) was used, and its pharmacokinetics and tissue distribution were investigated in mice. The results showed that the FITC-labelled method had good linearity (R2 > 0.99), intra-day and inter-day precision (RSD, %) consistently lower than 15%, recovery (93.19-106.54%), and stability (RSD < 15%), which met the basic criteria for pharmacokinetic studies. The pharmacokinetic and tissue distribution results in mice after administration showed that all three sample groups could enter the blood circulation. and HPC-FITC had a longer half-life (T1/2: 26.92 ± 0.76 h) and mean retention time (MRT0-∞: 36.48 h) due to its larger molecular weight. The three groups of samples could be absorbed by the organism in a short time (0.5 h) mainly in the stomach and intestine; the samples could be detected in the urine after 2 h of administration indicating strong renal uptake, and faecal excretion reached its maximum at 12 h. The samples were also detected in the urine after 2 h of administration. This study provides some theoretical basis for the tissue distribution pattern of polyphenol-polysaccharide complex.

6.
Inorg Chem ; 63(35): 16284-16292, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39152397

RESUMEN

Multicolor-tunable room-temperature phosphorescence (RTP) is attracting wide attention in optoelectronic applications. Here, we propose a coordination-oriented assembly approach to achieve wide-range RTP with a benzimidazole derivative (2,7-diazabenzimidazole, DZBIM) as a luminogen. These two compounds exhibit unexpected excitation-responsive RTP emission, and the phosphorescence emission nearly covers the entire visible region with the change of the excitation wavelength from 360 to 620 nm. To the best of our knowledge, this is the first report of coordination polymers with such a full-color-tunable RTP. Compound 1 also shows white-light emission upon excitation at 280 nm. Experimental and theoretical results demonstrate that multiple intermolecular interactions and emission centers from different aggregates are responsible for the generation of multicolor emission. The white-light emission and multiple anticounterfeiting are explored. Besides, compound 1 exhibits high antibacterial activity benefiting from efficient 1O2 generation. This work provides an efficient way to prepare a color-tunable RTP.

7.
Talanta ; 279: 126672, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111219

RESUMEN

Spinal cord injury (SCI) is a debilitating neurological and pathological condition that results in significant impairments in motor, sensory, and autonomic functions. By integrating multispectral imaging (MSI) with Raman spectroscopy, a label-free optical methodology was developed for achieving a non-invasive in vivo understanding on the pathological features of SCI evolution. Under the guidance of captured the spectral imaging data cube with a rigid endoscope based MSI system, a special designed fiber probe passed through the instrumental channel for acquiring the finger-print spectral information from compression rat SCI models. After identifying the main visual features of injured spinal cord tissue in all Sham, 0-, 3- and 7-days post injury (0 DPI, 3 DPI, and 7 DPI) groups, the blood volume and oxygen content were visualized to describe hemorrhage, hypoxia and inflammatory state after acute injury. The averaged reflectance spectra, which were deduced from MSI data cubes, were utilized for describing oxygen saturation and hemoglobin concentration in living tissue. The results of Raman spectroscopy addressed complex compositional and conformational phenomena during SCI progression, correlated with the well-known event like neuronal apoptosis, hemorrhage, demyelination, and even the upregulation of chondroitin sulfate proteoglycans (CSPGs). A principal component analysis and linear discriminate algorithm (PCA-LDA) based discriminate model was introduced for categorizing spectral features in different injury stages, which was applicable for intraoperative interpretations on the complex pathological courses of SCI and therapeutic outcomes.


Asunto(s)
Modelos Animales de Enfermedad , Espectrometría Raman , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/patología , Animales , Espectrometría Raman/métodos , Ratas , Ratas Sprague-Dawley , Análisis de Componente Principal , Masculino
8.
Antioxidants (Basel) ; 13(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39061943

RESUMEN

Bioactive glass nanoparticles (BGNs) are applied widely in tissue regeneration. Varied micro/nanostructures and components of BGNs have been designed for different applications. In the present study, nanorod-shaped mesoporous zinc-containing bioactive glass nanoparticles (ZnRBGNs) were designed and developed to form the bioactive content of composite materials for hard/soft tissue repair and regeneration. The nanostructure and components of the ZnRBGNs were characterized, as were their cytocompatibility and radical-scavenging activity in the presence/absence of cells and their ability to modulate macrophage polarization. The ZnRBGNs possessed a uniform rod shape (length ≈ 500 nm; width ≈ 150 nm) with a mesoporous structure (diameter ≈ 2.4 nm). The leaching liquid of the nanorods at a concentration below 0.5 mg/mL resulted in no cytotoxicity. More significant improvements in the antioxidant and M1-polarization-inhibiting effects and the promotion of M2 polarization were found when culturing the cells with the ZnRBGNs compared to when culturing them with the RBGNs. The doping of the Zn element in RBGNs may lead to improved antioxidant and anti-inflammatory effects, which may be beneficial in tissue regeneration/repair.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38896348

RESUMEN

Metamizole easily decomposes in the body and has a short action time and low bioavailability. Hence, frequent injection administrations are needed to maintain its plasma concentration. This study aimed to design and develop an in-situ gel based on poloxamer 407 and 188 to assess its long-acting antipyretic effects. The in-situ gel-forming systep00m with optimum sol-gel transition temperature of 35.9 °C to 36.3 °C could be formed using a combination of P407 at a ratio of 21-23% (w/v) and P188 at a ratio of 2-4% (w/v). In vitro erosion test showed that the in-situ gel's erosion curve and the metamizole release rate both reached about 90% at 6 h, revealing a good linear relationship between the in-situ gel erosion and the drug release. In vitro release test with dialysis tube showed that the release of metamizole from the in-situ gel was remarkably slower than that from the metamizole solution. Approximately 85% of metamizole was released in the dialysis tube within 7 h, implying a good sustained release effect. Pharmacodynamic study showed that the in-situ gel injection extended the action time of metamizole relative to that when using the metamizole solution. Pharmacokinetic study revealed that the in-situ gel significantly increased the blood serum half-life and area under the curve), contributing to a sustained release and improved bioavailability. This study demonstrated that in-situ gel injection could prolong the action of metamizole in the body to reduce the number of administration times and has good clinical application.

10.
mBio ; 15(7): e0013324, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38814088

RESUMEN

Botrytis cinerea is a typical necrotrophic plant pathogenic fungus which can deliberately acidify host tissues and trigger oxidative bursts therein to facilitate its virulence. The white collar complex (WCC), consisting of BcWCL1 and BcWCL2, is recognized as the primary light receptor in B. cinerea. Nevertheless, the specific mechanisms through which the WCC components, particularly BcWCL2 as a GATA transcription factor, control virulence are not yet fully understood. This study demonstrates that deletion of BcWCL2 results in the loss of light-sensitive phenotypic characteristics. Additionally, the Δbcwcl2 strain exhibits reduced secretion of citrate, delayed infection cushion development, weaker hyphal penetration, and decreased virulence. The application of exogenous citric acid was found to restore infection cushion formation, hyphal penetration, and virulence of the Δbcwcl2 strain. Transcriptome analysis at 48 h post-inoculation revealed that two citrate synthases, putative citrate transporters, hydrolytic enzymes, and reactive oxygen species scavenging-related genes were down-regulated in Δbcwcl2, whereas exogenous citric acid application restored the expression of the above genes involved in the early infection process of Δbcwcl2. Moreover, the expression of Bcvel1, a known regulator of citrate secretion, tissue acidification, and secondary metabolism, was down-regulated in Δbcwcl2 but not in Δbcwcl1. ChIP-qPCR and electrophoretic mobility shift assays revealed that BcWCL2 can bind to the promoter sequences of Bcvel1. Overexpressing Bcvel1 in Δbcwcl2 was found to rescue the mutant defects. Collectively, our findings indicate that BcWCL2 regulates the expression of the global regulator Bcvel1 to influence citrate secretion, tissue acidification, redox homeostasis, and virulence of B. cinerea.IMPORTANCEThis study illustrated the significance of the fungal blue light receptor component BcWCL2 protein in regulating citrate secretion in Botrytis cinerea. Unlike BcWCL1, BcWCL2 may contribute to redox homeostasis maintenance during infection cushion formation, ultimately proving to be essential for full virulence. It is also demonstrated that BcWCL2 can regulate the expression of Bcvel1 to influence host tissue acidification, citrate secretion, infection cushion development, and virulence. While the role of organic acids secreted by plant pathogenic fungi in fungus-host interactions has been recognized, this paper revealed the importance, regulatory mechanisms, and key transcription factors that control organic acid secretion. These understanding of the pathogenetic mechanism of plant pathogens can provide valuable insights for developing effective prevention and treatment strategies against fungal diseases.


Asunto(s)
Botrytis , Ácido Cítrico , Proteínas Fúngicas , Factores de Transcripción GATA , Regulación Fúngica de la Expresión Génica , Homeostasis , Oxidación-Reducción , Botrytis/genética , Botrytis/patogenicidad , Botrytis/metabolismo , Virulencia , Ácido Cítrico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción GATA/metabolismo , Factores de Transcripción GATA/genética , Enfermedades de las Plantas/microbiología , Eliminación de Gen , Hifa/crecimiento & desarrollo , Hifa/genética , Hifa/metabolismo , Perfilación de la Expresión Génica
11.
Chem Commun (Camb) ; 60(48): 6182-6185, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38804974

RESUMEN

Two pairs of chiral MOFs with hierarchical chiral structures were constructed through assembly of achiral AIE-type multidentate linkers and chiral camphoric acid. Non-reciprocal circularly polarized luminescence (CPL) can be observed on the macroscopic due to the coexistence of optical anisotropic and chiroptical nature. This study provides a new perspective to recognize and construct chiral crystalline materials.

12.
Chem Soc Rev ; 53(13): 6694-6734, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38747082

RESUMEN

Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.

13.
Int J Biol Macromol ; 263(Pt 2): 130485, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423434

RESUMEN

The effects of seaweed cellulose (SC) on high fat-sugar diet (HFSD)-induced glucolipid metabolism disorders in mice and potential mechanisms were investigated. SC was isolated from dealginated residues of giant kelp (Macrocystis pyrifera), with a crystallinity index of 85.51 % and an average particle size of 678.2 nm. Administering SC to C57BL/6 mice at 250 or 500 mg/kg BW/day via intragastric gavage for six weeks apparently inhibited the development of HFSD-induced obesity, dyslipidemia, insulin resistance, oxidative stress and liver damage. Notably, SC intervention partially restored the structure and composition of the gut microbiota altered by the HFSD, substantially lowering the Firmicutes to Bacteroidetes ratio, and greatly increasing the relative abundance of Lactobacillus, Bifidobacterium, Oscillospira, Bacteroides and Akkermansia, which contributed to improved short-chain fatty acid (SCFA) production. Supplementing with a higher dose of SC led to more significant increases in total SCFA (67.57 %), acetate (64.56 %), propionate (73.52 %) and butyrate (66.23 %) concentrations in the rectal contents of HFSD-fed mice. The results indicated that highly crystalline SC microparticles could modulate gut microbiota dysbiosis and ameliorate HFSD-induced obesity and related metabolic syndrome in mice. Furthermore, particle size might have crucial impact on the prebiotic effects of cellulose as insoluble dietary fiber.


Asunto(s)
Microbioma Gastrointestinal , Hiperlipidemias , Enfermedades Metabólicas , Animales , Ratones , Azúcares/farmacología , Celulosa/farmacología , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/inducido químicamente , Ácidos Grasos Volátiles/metabolismo , Dieta , Dieta Alta en Grasa/efectos adversos
14.
J Photochem Photobiol B ; 250: 112828, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101122

RESUMEN

Rheumatoid arthritis (RA) is caused by inflammatory response of joints with cartilage and damage of synovium and bone erosion. In our previous studies, it has showed that irradiation of 630 nm LED reduce inflammation of synovial fibroblasts and cartilage and bone destruction in RA. However, the key genes and mechanism in ameliorating RA by irradiation of 630 nm LED remains unknown. In this study, human fibroblast-like synoviocytes (FLS) cell line MH7A and primary human RA-FLSs were treated with TNF-α and 630 nm LED irradiation with the different energy density. The mRNA sequencing was performed to screen the differentially expressed genes (DEGs). In all datasets, 10 DEGs were identified through screening. The protein interaction network analysis showed that 8 out of the 10 DEGs interacted with each other including IL-6, CXCL2, CXCL3, MAF, PGF, IL-1RL1, RRAD and BMP4. This study focused on BMP4, which is identified as important morphogens in regulating the development and homeostasis. CCK-8 assay results showed that 630 nm LED irradiation did not affect the cell viability. The qPCR and ELISA results showed that TNF-α stimulation inhibited BMP4 mRNA and protein level and irradiation of 630 nm LED increased the BMP4 mRNA and protein level in MH7A cells. In CIA and transgenic hTNF-α mice models, H&E staining showed that irradiation of 630 nm LED decreased the histological scores assessed from inflammation and bone erosion, while BMP4 expression level was up-regulated after 630 nm LED irradiation. Pearson correlation analysis shown that BMP4 protein expression was negatively correlated with the histological score of CIA mice and transgenic hTNF-α mice. These results indicated that BMP4 increased by irradiation of 630 nm LED was associated with the amelioration of RA, which suggested that BMP4 may be a potential targeting gene for photobiomodulation.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Proteína Morfogenética Ósea 4 , Luz , Animales , Humanos , Ratones , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/terapia , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/fisiología , Proliferación Celular , Células Cultivadas , Fibroblastos/metabolismo , Inflamación/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
15.
Foods ; 12(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37893618

RESUMEN

Hizikia fusiforme has a long history of consumption and medicinal use in China. It has been found that natural plants containing polyphenol-polysaccharide complexes have better activity compared with polyphenols and polysaccharides. Therefore, in this study on enzymatic hydrolysis and fractional alcohol precipitation, two kinds of polyphenol-polysaccharide complexes (PPC), PPC1 and PPC2, were initially obtained from Hizikia fusiforme, while the dephenolization of PPC1 and PPC2 produced PPC3 and PPC4. Through in vitro assays, PPC2 and PPC4 were found to have higher antioxidant activity, and thus were selected for testing the PPCs' anti-aging activity in a subsequent in vivo experiment with D-gal-induced aging in mice. The results indicated that PPCs could regulate the expressions of antioxidant enzymes and products of oxidation, elevate the expressions of genes and proteins related to the Nrf2 pathway in the mouse brain, enrich the gut microbiota species and increase the Bacteroidota-Firmicute (B/F) ratio. Above all, the Hizikia fusiforme polyphenol-polysaccharide complex has potential in the development of natural anti-aging drugs.

16.
J Microencapsul ; 40(8): 649-662, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37867421

RESUMEN

To improve the stability of fucoxanthin, fucoxanthin liposomes (L) were prepared by the thin-film ultrasound method, and fucoxanthin liposomes were modified with sodium alginate and chitosan by an electrostatic deposition method. The release characteristics of fucoxanthin in different types of liposomes with in vitro gastrointestinal simulation were studied. Under the optimum conditions, the results showed that the encapsulation efficiency of prepared liposomes could reach 88.56 ± 1.40% (m/m), with an average particle size of 295.27 ± 7.28 nm, a Zeta potential of -21.53 ± 2.00 mV, a polydispersity index (PDI) of 0.323 ± 0.007 and a loading capacity of 33.3 ± 0.03% (m/m). Compared with L and chitosan modified fucoxanthin liposomes (CH), sodium alginate and chitosan modified fucoxanthin liposomes (SA-CH) exhibited higher storage stability, in vitro bioaccessibility and antioxidant activity after gastrointestinal digestion. Sodium alginate and chitosan co-modified liposomes can be developed as formulations for encapsulation and delivery of functional ingredients, providing a theoretical basis for developing new fucoxanthin series products.


Asunto(s)
Quitosano , Liposomas , Sistemas de Liberación de Medicamentos/métodos , Antioxidantes , Alginatos , Tamaño de la Partícula
17.
ACS Macro Lett ; 12(11): 1437-1442, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37819638

RESUMEN

We report a rapid cross-linking strategy for the fabrication of polymer hydrogels based on a thiol-disulfide cascade reaction. Specifically, thiolated polymers (e.g., poly(ethylene glycol), hyaluronic acid, sodium alginate, poly(acrylic acid), and poly(methylacrylic acid)) can be cross-linked via the trigger of Ellman's reagent, resulting in the rapid formation of hydrogels over 20-fold faster than that via the oxidation in air. The gelation kinetics of hydrogels can be tuned by varying the polymer concentration and the molar ratio of Ellman's reagent and free thiols. The obtained hydrogels can be further functionalized with functional moieties (e.g., targeting ligands) for the selective adhesion of cells. This approach is applicable to various natural and synthetic polymers for the assembly of hydrogels with a minimized gelation time, which is promising for various biological applications.

18.
Anal Chim Acta ; 1278: 341750, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37709435

RESUMEN

Cytokine storm (CS) is a risky immune overreaction accompanied by significant elevations of pro-inflammatory cytokines including interferon-γ (IFN-γ), interleukin and tumor necrosis factor. Sensitive detection of cytokine is conducive to studying CS progress and diagnosing infectious diseases. In this study, we developed a tandem system combining aptamer, strand displacement amplification (SDA), CRISPR/Cas12a, and cobalt oxyhydroxide nanosheets (termed Apt-SCN tandem system) as a signal-amplified platform for IFN-γ detection. Owing to the stronger affinity, target IFN-γ bound specifically to the aptamer from aptamer-complementary DNA (Apt-cDNA) duplex. The cDNA released from the Apt-cDNA duplex initiated SDA, resulting in the generation of double-stranded DNA products that could activate the trans-cleavage activity of CRISPR/Cas12a. The activated CRISPR/Cas12a further cleaved FAM-labeled single-stranded DNA probe, preventing it from adhering to the cobalt oxyhydroxide nanosheets and recovering the fluorescence signal. Sensitive fluorometric analysis of IFN-γ was successfully performed with detection limit as low as 0.37 nM. Unlike traditional protein analysis methods, Apt-SCN tandem system incorporates multiple signal amplification techniques and may also be applicable for other cytokines assay. This study was the initial study to utilize SDA and CRISPR/Cas12a to detect IFN-γ, showing great potential for cytokines clinical assay and CS prevention.


Asunto(s)
Sistemas CRISPR-Cas , Interferón gamma , ADN Complementario , Citocinas , Oligonucleótidos
19.
Neurosci Biobehav Rev ; 153: 105403, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37742989

RESUMEN

The role of gut dysbiosis in depression is well established. However, recent studies have shown that gut microbiota is regulated by intestinal epithelial cell (IEC) mitochondria, which has yet to receive much attention. This review summarizes the recent developments about the critical role of IEC mitochondria in actively maintaining gut microbiota, intestinal metabolism, and immune homeostasis. We propose that IEC mitochondrial dysfunction alters gut microbiota composition, participates in cell fate, mediates oxidative stress, activates the peripheral immune system, causes peripheral inflammation, and transmits peripheral signals through the vagus and enteric nervous systems. These pathological alterations lead to brain inflammation, disruption of the blood-brain barrier, activation of the hypothalamic-pituitary-adrenal axis, activation of microglia and astrocytes, induction of neuronal loss, and ultimately depression. Furthermore, we highlight the prospect of treating depression through the mitochondria of IECs. These new findings suggest that the mitochondria of IECs may be a newly found important factor in the pathogenesis of depression and represent a potential new strategy for treating depression.

20.
Mar Drugs ; 21(9)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37755081

RESUMEN

Ascophyllum nodosum, a brown algae abundantly found along the North Atlantic coast, is recognized for its high polysaccharide content. In this study, we investigated the anti-hyperlipidemic effect of fucoidans derived from A. nodosum, aiming to provide information for their potential application in anti-hyperlipidemic therapies and to explore comprehensive utilization of this Iceland brown seaweed. The crude fucoidan prepared from A. nodosum was separated using a diethylethanolamine column, resulting in two fucoidan fractions, AFC-1 and AFC-2. Both fractions were predominantly composed of fucose and xylose. AFC-1 exhibited a higher sulfate content of 27.8% compared to AFC-2 with 17.0%. AFC-2 was primarily sulfated at the hydroxy group of C2, whereas AFC-1 was sulfated at both the hydroxy groups of C2 and C4. To evaluate the anti-hyperlipidemic effect, a hyperlipidemia mouse model was established by feeding mice a high-fat diet. The effects of AFC-1, AFC-2, and the crude extract were investigated, with the drug atorvastatin used as a positive comparison. Among the different fucoidan fractions and doses, the high dose of AFC-2 administration demonstrated the most significant anti-hyperlipidemic effect across various aspects, including physiological parameters, blood glucose levels, lipid profile, histological analysis, and the activities of oxidative stress-related enzymes and lipoprotein-metabolism-related enzymes (p < 0.05 for the final body weight and p < 0.01 for the rest indicators, compared with the model group), and its effect is comparable to the atorvastatin administration. Furthermore, fucoidan administration resulted in a lower degree of loss in gut flora diversity compared to atorvastatin administration. These findings highlight the significant biomedical potential of fucoidans derived from A. nodosum as a promising therapeutic solution for hypolipidemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA