Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38925147

RESUMEN

Perovskite solar cells (PSCs) with an "inverted" architecture are a key pathway for commercializing this emerging photovoltaic technology due to the better power conversion efficiency (PCE) and operational stability as compared to the "normal" device structure. Specifically, PCEs of the inverted PSCs have exceeded 25% owing to the development of improved self-assembled molecules (SAMs)1-5 and passivation strategies6-8. Nevertheless, poor wettability and agglomerations of SAMs9-12 will cause interfacial losses, impeding further improvement in PCE and stability. Herein, we report on molecular hybrid at the buried interface in inverted PSCs by co-assembling a multiple carboxylic acid functionalized aromatic compound of 4,4',4''-nitrilotribenzoicacid (NA) with a popular SAM of [4-(3,6-dime-thyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted PSCs demonstrated a record-certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving the highest certified PCE for inverted mini-modules at 22.74% (aperture area: 11.1 cm2). Our device also maintained 96.1% of its initial PCE after more than 2,400 hours of 1-sun operation in ambient air.

2.
Small Methods ; : e2301223, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38204289

RESUMEN

In recent years, perovskite solar cells (PSCs) have attracted significant attention due to their excellent photoelectric properties. However, several key performance parameters of these devices still fall short of their theoretical limits. Among these parameters, the regulation of open-circuit voltage (VOC ) has been a focal point of intensive research efforts, playing a pivotal role in advancing the efficiency of PSCs. This review first provides an overview of the generation and loss mechanism of VOC . It then discusses the significance of interface engineering in VOC regulation. Recent developments in high-efficiency PSCs realized via interface engineering have been summarized and categorized into three key areas: surface modification, interface structure optimization, and surface dimensional engineering. Finally, a comprehensive summary of past research in this domain and offered insights into the future prospects of enhancing VOC in PSCs is provided.

3.
Nat Commun ; 14(1): 6120, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777526

RESUMEN

The long-term stability of perovskite solar cells remains one of the most important challenges for the commercialization of this emerging photovoltaic technology. Here, we adopt a non-noble metal/metal oxide/polymer multiple-barrier to suppress the halide consumption and gaseous perovskite decomposition products release with the chemically inert bismuth electrode and Al2O3/parylene thin-film encapsulation, as well as the tightly closed system created by the multiple-barrier to jointly suppress the degradation of perovskite solar cells, allowing the corresponding decomposition reactions to reach benign equilibria. The resulting encapsulated formamidinium cesium-based perovskite solar cells with multiple-barrier maintain 90% of their initial efficiencies after continuous operation at 45 °C for 5200 h and 93% of their initial efficiency after continuous operation at 75 °C for 1000 h under 1 sun equivalent white-light LED illumination.

5.
Macromol Rapid Commun ; 43(15): e2200187, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35451198

RESUMEN

Effective p-type doping is essential to enhance hole transport and balance electron-hole injection in quantum dot light-emitting diodes (QLEDs). Here, an oligothiophene material is adopted as a p-type dopant in the hole-transport layer, considering its cruciform cross-center structure, precise molecular weight, and high purity. Compared with the dopant-free counterpart, hole transport capability at the optimal doping level exhibits a significant improvement, producing a boosted external quantum efficiency (EQE) and luminance up to 20.8%, 213 439 cd m-2 , respectively, among the highest reported on the red-light emission. The work indicates the potential applications of oligothiophene material in red light-emitting devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...