Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Nat Plants ; 10(5): 771-784, 2024 May.
Article En | MEDLINE | ID: mdl-38684916

The fall armyworm (FAW) poses a significant threat to global crop production. Here we showed that overexpression of jasmonate ZIM-domain (JAZ) protein GhJAZ24 confers resistance to cotton bollworm and FAW, while also causing sterility in transgenic cotton by recruiting TOPLESS and histone deacetylase 6. We identified the NGR motif of GhJAZ24 that recognizes and binds the aminopeptidase N receptor, enabling GhJAZ24 to enter cells and disrupt histone deacetylase 3, leading to cell death. To overcome plant sterility associated with GhJAZ24 overexpression, we developed iJAZ (i, induced), an approach involving damage-induced expression and a switch from intracellular to extracellular localization of GhJAZ24. iJAZ transgenic cotton maintained fertility and showed insecticidal activity against cotton bollworm and FAW. In addition, iJAZ transgenic rice, maize and tobacco plants showed insecticidal activity against their lepidopteran pests, resulting in an iJAZ-based approach for generating alternative insecticidal proteins with distinctive mechanisms of action, thus holding immense potential for future crop engineering.


Crops, Agricultural , Gossypium , Moths , Plants, Genetically Modified , Animals , Crops, Agricultural/genetics , Moths/physiology , Moths/genetics , Gossypium/genetics , Gossypium/parasitology , Plant Proteins/genetics , Plant Proteins/metabolism , Oryza/genetics , Oryza/parasitology , Zea mays/genetics , Zea mays/parasitology , Nicotiana/genetics , Nicotiana/parasitology
2.
Molecules ; 29(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38611712

Zeolite microspheres have been successfully applied in commercial-scale separators such as oxygen concentrators. However, further enhancement of their applications is hampered by the post-synthetic shaping process that formulates the zeolite powder into packing-sized spherical bodies with various binders leading to active site blockage and suboptimal performance. Herein, binderless zeolite microspheres with a tunable broad size range from 2 µm to 500 µm have been developed with high crystallinity, sphericity over 92%, monodispersity with a coefficient of variation (CV) less than 5%, and hierarchical pore architecture. Combining precursor impregnation and steam-assisted crystallization (SAC), mesoporous silica microspheres with a wide size range could be successfully transformed into zeolite. For preserved size and spherical morphology, a judicious selection of the synthesis conditions is crucial to ensure a pure phase, high crystallinity, and hierarchical architecture. For the sub-2-µm zeolite microsphere, low-temperature prolonged aging was important so as to suppress external zeolization that led to a large, single macroporous crystal. For the large 500 µm sphere, ultrasound pretreatment and vacuum impregnation were crucial and facilitated spatially uniform gel matrix dispersion and homogenous crystallization. The obtained zeolite 5A microspheres exhibited excellent air separation performance, while the 4A microspheres displayed ammonium removal capabilities. This work provides a general strategy to overcome the existing limitations in fabricating binder-free technical bodies of zeolites for various applications.

3.
Plant Cell Rep ; 43(4): 94, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38472660

KEY MESSAGE: Taxadiene synthase, taxadiene-5α-hydroxylase, and taxane 13α-hydroxylase genes were introduced into Nicotiana benthamiana, and the improved resistance to lepidoptera pest fall armyworm was reported. Fall armyworm (FAW) is a serious agricultural pest. Genetic engineering techniques have been used to create pest-resistant plant varieties for reducing pest damage. Paclitaxel is a diterpenoid natural metabolite with antineoplastic effects in medicine. However, the effects of taxanes on the growth and development of lepidoptera pests, such as the FAW, are unknown. Here, selected paclitaxel precursor biosynthesis pathway genes, taxadiene synthase, taxane 5α-hydroxylase, and taxane 13α-hydroxylase, were engineered in the heterologous host Nicotiana benthamiana plants. Bioassay experiments showed that the transgenic N. benthamiana plants displayed improved resistance to FAW infestation, with degeneration of gut tissues and induced expression of apoptosis-related genes. Cytotoxicity experiment showed that the paclitaxel precursor, 10-deacetylbaccatin III, is cytotoxic to Sf9 cells, causing cell cycle arrest at the G2/M phase and disorder of the cytoskeleton. Metabolome analysis showed that heterologous expression of taxane genes in N. benthamiana affected the digestive system, steroid hormone and purine metabolism pathways of FAW larvae. In summary, this study provides a candidate approach for FAW control.


Bridged-Ring Compounds , Nicotiana , Taxoids , Animals , Spodoptera , Taxoids/metabolism , Taxoids/pharmacology , Paclitaxel/pharmacology , Plants, Genetically Modified/metabolism , Larva
4.
Clin Transl Oncol ; 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38453817

BACKGROUND: Colorectal cancer (CRC) prognosis assessment is vital for personalized treatment plans. This study investigates the prognostic value of dynamic changes of tumor markers CEA, CA19-9, CA125, and AFP before and after surgery and constructs prediction models based on these indicators. METHODS: A retrospective clinical study of 2599 CRC patients who underwent radical surgery was conducted. Patients were randomly divided into training (70%) and validation (30%) datasets. Univariate and multivariate Cox regression analyses identified independent prognostic factors, and nomograms were constructed. RESULTS: A total of 2599 CRC patients were included in the study. Patients were divided into training (70%, n = 1819) and validation (30%, n = 780) sets. Univariate and multivariate Cox regression analyses identified age, total number of resected lymph nodes, T stage, N stage, the preoperative and postoperative changes in the levels of CEA, CA19-9, and CA125 as independent prognostic factors. When their postoperative levels are normal, patients with elevated preoperative levels have significantly worse overall survival. However, when the postoperative levels of CEA/CA19-9/CA125 are elevated, whether their preoperative levels are elevated or not has no significance for prognosis. Two nomogram models were developed, and Model I, which included CEA, CA19-9, and CA125 groups, demonstrated the best performance in both training and validation sets. CONCLUSION: This study highlights the significant predictive value of dynamic changes in tumor markers CEA, CA19-9, and CA125 before and after CRC surgery. Incorporating these markers into a nomogram prediction model improves prognostic accuracy, enabling clinicians to better assess patients' conditions and develop personalized treatment plans.

5.
Microbiol Spectr ; 12(3): e0501622, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38289115

Infectious hematopoietic necrosis virus (IHNV) causes infectious hematopoietic necrosis and severe economic losses to salmon and trout aquaculture worldwide. Currently, the only commercial vaccine against IHNV is a DNA vaccine with some biosafety concerns. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, 1,483 compounds were screened from a traditional Chinese medicine monomer library, and bufalin showed potential antiviral activity against IHNV. The 50% cytotoxic concentration of bufalin was >20 µM, and the 50% inhibitory concentration was 0.1223 µΜ against IHNV. Bufalin showed the inhibition of diverse IHNV strains in vitro, which confirmed that it had an inhibitory effect against all IHNV strains, rather than random activity against a single strain. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization. Bufalin also inhibited IHNV infection in vivo and significantly increased the survival of rainbow trout compared with the mock drug-treated group, and this was confirmed by in vivo viral load monitoring. Our data showed that the anti-IHNV activity of bufalin was proportional to extracellular Na+ concentration and inversely proportional to extracellular K+ concentration, and bufalin may inhibit IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout. IMPORTANCE: Infectious hematopoietic necrosis virus (IHNV) is the pathogen of infectious hematopoietic necrosis (IHN) which outbreak often causes huge economic losses and hampers the healthy development of salmon and trout farming. Currently, there is only one approved DNA vaccine for IHN worldwide, but it faces some biosafety problems. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, we report that bufalin, a traditional Chinese medicine, shows potential antiviral activity against IHNV both in vitro and in vivo. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization, and bufalin inhibited IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout.


Bufanolides , Fish Diseases , Infectious hematopoietic necrosis virus , Oncorhynchus mykiss , Vaccines, DNA , Animals , Infectious hematopoietic necrosis virus/genetics , Medicine, Chinese Traditional , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Adenosine Triphosphatases , Necrosis , Fish Diseases/drug therapy , Fish Diseases/prevention & control
6.
Sci Rep ; 13(1): 22830, 2023 12 20.
Article En | MEDLINE | ID: mdl-38129505

Carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 125 (CA125), and alpha-fetoprotein (AFP) are widely used tumor markers for colorectal cancer (CRC), but their clinical significance is unknown when the levels of these tumor markers were within the normal range. This retrospective study included 2145 CRC patients. The entire cohort was randomly divided into training and validation datasets. The optimal cut-off values of tumor markers were calculated using X-tile software, and univariate and multivariate analyses were performed to assess its association with overall survival (OS). The nomogram model was constructed and validated. The entire cohort was randomly divided into a training dataset (1502 cases, 70%) and a validation dataset (643 cases,30%). Calculated from the training dataset, the optimal cut-off value was 2.9 ng/mL for CEA, 10.1 ng/mL for CA19-9, 13.4 U/mL for CA125, and 1.8 ng/mL for AFP, respectively. Multivariate analysis revealed that age, tumor location, T stage, N stage, preoperative CA19-9, and CA125 levels were independent prognostic predictors. Even within the normal range, CRC patients with relatively high levels of CA19-9 or CA125 worse OS compared to those with relatively low levels. Then, based on the independent prognostic predictors from multivariate analysis, two models with/without (model I/II) CA19-9 and CA125 were built, model I showed better prediction and reliability than model II. Within the normal range, relatively high levels of preoperative CA19-9 and CA125 were significantly associated with poor OS in CRC patients. The nomogram based on CA19-9 and CA125 levels showed improved predictive accuracy ability for CRC.


Biomarkers, Tumor , Colorectal Neoplasms , Humans , Carcinoembryonic Antigen , alpha-Fetoproteins , CA-19-9 Antigen , Prognosis , Retrospective Studies , Reproducibility of Results , CA-125 Antigen , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/surgery
7.
Cell Biosci ; 13(1): 217, 2023 Nov 29.
Article En | MEDLINE | ID: mdl-38031173

The role of mast cells (MCs) in colorectal cancer (CRC) remains unclear, and a comprehensive single-cell study on CRC MCs has not been conducted. This study used a multi-omics approach, integrating single-cell sequencing, spatial transcriptomics, and bulk tissue sequencing data to investigate the heterogeneity and impact of MCs in CRC. Five MC signature genes (TPSAB1, TPSB2, CPA3, HPGDS, and MS4A2) were identified, and their average expression was used as a marker of MCs. The MC density was found to be lower in CRC compared to normal tissue, but MCs in CRC demonstrated distinct activation features. Activated MCs were defined by high expression of receptors and MC mediators, while resting MCs had low expression. Most genes, including the five MC signature genes, were expressed at higher levels in activated MCs. The MC signature was linked to a better prognosis in both CRC and pan-cancer patient cohorts. Elevated KITLG expression was observed in fibroblasts and endothelial cells in CRC samples compared to normal tissue, and co-localization of MCs with these cell types was revealed by spatial transcriptome analysis. In conclusion, this study finds decreased MC density in CRC compared to normal tissue, but highlights a shift in MC phenotype from CMA1high resting cells to activated TPSAB1high, CPA3high, and KIThigh cells. The elevated KITLG expression in the tumor microenvironment's fibroblasts and endothelial cells may activate MCs through the KITLG-KIT axis, potentially suppressing tumor progression.

8.
Cell Death Dis ; 14(11): 743, 2023 11 15.
Article En | MEDLINE | ID: mdl-37968261

BRISC (BRCC3 isopeptidase complex) is a deubiquitinating enzyme that has been linked with inflammatory processes, but its role in liver diseases and the underlying mechanism are unknown. Here, we investigated the pathophysiological role of BRISC in acute liver failure using a mice model induced by D-galactosamine (D-GalN) plus lipopolysaccharide (LPS). We found that the expression of BRISC components was dramatically increased in kupffer cells (KCs) upon LPS treatment in vitro or by the injection of LPS in D-GalN-sensitized mice. D-GalN plus LPS-induced liver damage and mortality in global BRISC-null mice were markedly attenuated, which was accompanied by impaired hepatocyte death and hepatic inflammation response. Constantly, treatment with thiolutin, a potent BRISC inhibitor, remarkably alleviated D-GalN/LPS-induced liver injury in mice. By using bone marrow-reconstituted chimeric mice and cell-specific BRISC-deficient mice, we demonstrated that KCs are the key effector cells responsible for protection against D-GalN/LPS-induced liver injury in BRISC-deficient mice. Mechanistically, we found that hepatic and circulating levels of TNF-α, IL-6, MCP-1, and IL-1ß, as well as TNF-α- and MCP-1-producing KCs, in BRISC-deleted mice were dramatically decreased as early as 1 h after D-GalN/LPS challenge, which occurred prior to the elevation of the liver injury markers. Moreover, LPS-induced proinflammatory cytokines production in KCs was significantly diminished by BRISC deficiency in vitro, which was accompanied by potently attenuated NF-κB activation. Restoration of NF-κB activation by two small molecular activators of NF-κB p65 effectively reversed the suppression of cytokines production in ABRO1-deficient KCs by LPS. In conclusion, BRISC is required for optimal activation of NF-κB-mediated proinflammatory cytokines production in LPS-treated KCs and contributes to acute liver injury. This study opens the possibility to develop new strategies for the inhibition of KCs-driven inflammation in liver diseases.


Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Animals , Mice , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Kupffer Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Liver/metabolism , Inflammation/metabolism , Galactosamine , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism
9.
Fish Shellfish Immunol ; 142: 109116, 2023 Nov.
Article En | MEDLINE | ID: mdl-37758098

Infectious pancreatic necrosis virus (IPNV) is the pathogen of infectious pancreatic necrosis (IPN), which can cause high mortality in salmonids, harm the healthy development of salmon-trout aquaculture, and lead to huge economic losses. However, in China, there is currently neither a commercially available vaccine to prevent IPNV infection nor antiviral drugs to treat IPNV infection. The genome of IPNV consists of two segments of dsRNA named A and B. Segment B encodes the RNA-dependent RNA-polymerase (RdRp) VP1 which is essential for viral RNA replication and is therefore considered an important target for the development of antiviral drugs. In this study, we investigate whether 2'-C-methylcytidine (2CMC), a nucleoside analog which target viral polymerases, has an inhibitory effect on IPNV both in vitro and in vivo. The results show that 2CMC inhibits IPNV infection by inhibiting viral RNA replication rather than viral internalization or attachment. In vivo experiment results showed that 2CMC could inhibit viral RNA replication and reduce viral load in rainbow trout (Oncorhynchus mykiss). In our study, we have revealed that 2CMC has a potent inhibitory effect against IPNV infection. Our data suggest that 2CMC is an attractive anti-IPNV drug candidate which will be highly valuable for the development of potential therapeutics for IPNV.


Birnaviridae Infections , Fish Diseases , Infectious pancreatic necrosis virus , Oncorhynchus mykiss , Animals , RNA , Antiviral Agents/pharmacology
10.
J Cancer Res Clin Oncol ; 149(15): 14045-14056, 2023 Nov.
Article En | MEDLINE | ID: mdl-37548773

PURPOSE: The objective of this study is to examine the risk factors that contribute to the development of liver metastasis (LM) in patients who have suffered radical resection for colorectal cancer (CRC), and to establish a nomogram model that can be used to predict the occurrence of the LM. METHODS: The present study enrolled 1377 patients diagnosed with CRC between January 2010 and July 2021. The datasets were allocated to training (n = 965) and validation (n = 412) sets in a randomly stratified manner. The study utilized univariate and multivariate logistic regression analyses to establish a nomogram for predicting LM in patients with CRC. RESULTS: Multivariate analysis revealed that T stage, N stage, number of harvested lymph nodes (LNH), mismatch repair (MMR) status, neutrophil count, monocyte count, postoperative carcinoembryonic antigen (CEA) levels, postoperative cancer antigen 125 (CA125) levels, and postoperative carbohydrate antigen 19-9 (CA19-9) levels were independent predictive factors for LM after radical resection. These factors were then utilized to construct a comprehensive nomogram for predicting LM. The nomogram demonstrated great discrimination, with an area under the curve (AUC) of 0.782 for the training set and 0.768 for the validation set. Additionally, the nomogram exhibited excellent calibration and significant clinical benefit as confirmed by the calibration curves and the decision curve analysis, respectively. CONCLUSION: This nomogram has the potential to support clinicians in identifying high-risk patients who may develop LM post-surgery. Clinicians can devise personalized treatment and follow-up plans, ultimately leading to an improved prognosis for patients.

11.
Heliyon ; 9(7): e18038, 2023 Jul.
Article En | MEDLINE | ID: mdl-37483815

Mesenchymal stem cells (MSCs) are becoming more popular in therapy. Therefore, in-depth studies on mesenchymal stem cells in therapy are urgently needed. However, the difficulty in culturing and propagating MSCs in vitro complicates potential studies on MSCs in a murine model. OP9 cells are a stromal cell line from mouse bone marrow, which have similar characteristics and functions to MSCs and can maintain their original characteristics. Because of these properties, OP9 cells have become a suitable substitute for research on MSCs. Previously, we have found that MSCs can cure inflammatory bowel disease in mice. In this study, we aimed to investigate whether OP9 cells can functionally regulate and alleviate inflammatory diseases. We evaluated the therapeutic effect of OP9 cells in the mouse model of inflammatory bowel disease and found OP9 cells were able to ameliorate inflammatory bowel disease. We explored the existence of NLRP3 inflammasome in OP9 cells, and showed better therapeutic effects when the NLRP3 inflammasome was suppressed. Thus, OP9 cell line is similar to MSCs in characteristic and function, and is an ideal substitute for MSCs research. The preliminary exploration of the inflammasome system in OP9 cells lays a theoretical and methodological foundation for further study of MSCs.

12.
Diabetes ; 72(10): 1502-1516, 2023 10 01.
Article En | MEDLINE | ID: mdl-37440709

Hepatocyte nuclear factor 1α (HNF1α) plays essential roles in controlling development and metabolism; its mutations are clearly linked to the occurrence of maturity-onset diabetes of the young (MODY3) in humans. Lysine 117 (K117) to glutamic acid (E117) mutation in the HNF1α gene has been clinically associated with MODY3, but no functional data on this variant are available. Here, we addressed the role of lysine 117 in HNF1α function using a knock-in animal model and site-directed mutagenesis. HNF1α K117E homozygous mice exhibited dwarfism, hepatic dysfunction, renal Fanconi syndrome, and progressive wasting syndrome. These phenotypes were very similar to those of mice with complete HNF1α deficiency, suggesting that K117 is critical to HNF1α functions. K117E homozygotes developed diabetes in the early postnatal period. The relative deficiency of serum insulin levels and the normal response to insulin treatment in homozygous mice were markedly similar to those in the MODY3 disorder in humans. Moreover, K117E heterozygous mutant causes age-dependent glucose intolerance, which is similar to the pathogenesis of MODY3 as well. K117 mutants significantly reduced the overall transactivation and DNA binding capacity of HNF1α by disrupting dimerization. Collectively, our findings reveal a previously unappreciated role of POU domain of HNF1α in homodimerization and provide important clues for identifying the molecular basis of HNF1α-related diseases such as MODY3. ARTICLE HIGHLIGHTS: HNF1α K117E homozygous mice exhibited dwarfism, hepatic dysfunction, renal Fanconi syndrome, and progressive wasting syndrome. K117E homozygotes developed diabetes in the early postnatal period. K117E heterozygous mutant causes age-dependent glucose intolerance, which is similar to the pathogenesis of maturity-onset diabetes of the young. K117 mutants significantly reduced the overall transactivation and DNA binding capacity of HNF1α by disrupting dimerization.


Diabetes Mellitus, Type 2 , Fanconi Syndrome , Glucose Intolerance , Insulins , Mice , Humans , Animals , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Lysine/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , DNA , Insulins/genetics , Mutation
13.
Biochem Biophys Res Commun ; 671: 229-235, 2023 09 03.
Article En | MEDLINE | ID: mdl-37307706

The process of erythroid differentiation is orchestrated at the molecular level by a complex network of transcription factors. Erythroid Krüppel-like factor (EKLF/KLF1) is a master erythroid gene regulator that directly regulates most aspects of terminal erythroid differentiation. However, the underlying regulatory mechanisms of EKLF protein stability are still largely unknown. In this study, we identified Vacuolar protein sorting 37 C (VPS37C), a core subunit of the Endosomal sorting complex required for transport-I (ESCRT-I) complex, as an essential regulator of EKLF stability. Our study showed that VPS37C interacts with EKLF and prevents K48-linked polyubiquitination of EKLF and proteasome-mediated EKLF degradation, thus enhancing EKLF protein stability and transcriptional activity. VPS37C overexpression in murine erythroleukemia (MEL) cells promotes hexamethylene bisacetamide (HMBA)-induced erythroid differentiation manifested by up-regulating erythroid-specific EKLF target genes and increasing benzidine-positive cells. In contrast, VPS37C knockdown inhibits HMBA-induced MEL cell erythroid differentiation. Particularly, the restoration of EKLF expression in VPS37C-knockdown MEL cells reverses erythroid-specific gene expression and hemoglobin production. Collectively, our study demonstrated VPS37C is a novel regulator of EKLF ubiquitination and degradation, which plays a positive role in erythroid differentiation of MEL cells by enhancing EKLF protein stability.


Kruppel-Like Transcription Factors , Protein C , Animals , Mice , Protein C/metabolism , Kruppel-Like Transcription Factors/metabolism , Cell Differentiation/genetics , Protein Transport , Erythroid Cells/metabolism
14.
Life Sci ; 321: 121591, 2023 May 15.
Article En | MEDLINE | ID: mdl-36934969

AIMS: In the past decades, Txnrd3 as selenoprotein is considered to be highly expressed in testis and participate in sperm mature; however its role in liver diseases needs further study. Iron is essential for humans and animals, while its overload could damage to multiple organs. However, role of Txnrd3 and iron in cirrhosis is still unclear. MATERIALS AND METHODS: Forty 8-week-old wild-type and forty Txnrd3-/- mice were selected to build liver cirrhosis model using Thiacetamide solution, deposition of iron in liver was observed via Prussian blue staining. Txnrd3 overexpression/knockdown model in vitro was constructed based on cell transfection techniques in AML12 cells, expression abundance of ferroptosis pathway genes within cells and tissues were determined by qRT-PCR and Western Blot. KEY FINDINGS: Results showed that Txnrd3-/- mice developed more pronounced liver damage, accompanied by reduced GPX4 expression and iron deposition. A significant decrease in the expression abundance of GPX4 was also detected in Txnrd3 knock-down AML12 cells. In summary, Txnrd3 knockdown could result in iron overload and ferroptosis pathway activation within liver tissues and hepatocytes, ultimately lead to the occurrence of liver injury and cirrhosis. SIGNIFICANCE: These results will provide biological markers for early diagnosis during cirrhosis and lay a theoretical basis for clinical therapy.


Ferroptosis , Humans , Male , Mice , Animals , Thioredoxin-Disulfide Reductase , Semen/metabolism , Liver Cirrhosis/genetics , Iron/metabolism
15.
Int J Mol Sci ; 25(1)2023 Dec 25.
Article En | MEDLINE | ID: mdl-38203479

Infectious hematopoietic necrosis virus (IHNV) is an important pathogen that causes significant economic losses to salmon trout farming. Although vaccines have been invented for the treatment of IHNV, findings from our previous survey show that breeding enterprises and farmers require effective oral drugs or immune enhancers. However, studies on the development of oral drugs are limited. In the present study, we used bioinformatics methods to predict the protein targets of andrographolide (Andro) in IHNV. Cells were infected with IHNV, and the effect of andrographolide was explored by evaluating the expression levels of genes implicated in oxidative stress, activities of antioxidant enzymes, and the expression of genes implicated in apoptosis and necrosis. In the present study, cells were divided into NC, IHNV, IHNV+10 µM andrographolide, and IHNV+20 µM andrographolide groups. qRT-PCR was performed to determine the expression level of genes, and an antioxidant enzyme detection kit was used to evaluate the activities of antioxidant enzymes. Fluorescent staining was performed using a reactive oxygen species detection kit (ROS) and Hoechst 33342/PI double staining kit, and the mechanism of alleviation of apoptosis and oxidative stress andrographolide after IHNV infection was determined. The results indicated that andrographolide inhibits viral growth by binding to the NV protein of IHNV and increasing the antioxidant capacity of the body through the CTSK/BCL2/Cytc axis, thereby inhibiting the occurrence of IHNV-induced apoptosis. This is the first study to explore the antagonistic mechanism of action of andrographolide in alleviating IHNV infection. The results provide valuable information on alternative strategies for the treatment of IHNV infection during salmon family and provide a reference for the use of andrographolide as an antioxidant agent in agricultural settings.


Antioxidants , Diterpenes , Infectious hematopoietic necrosis virus , Antioxidants/pharmacology , Oxidative Stress , Apoptosis , Proto-Oncogene Proteins c-bcl-2/genetics
16.
Viruses ; 14(12)2022 11 25.
Article En | MEDLINE | ID: mdl-36560638

Infectious pancreatic necrosis virus (IPNV) is the causative agent of rainbow trout (Oncorhynchus mykiss) IPN and causes significant loss of fingerlings. The currently prevalent IPNV genogroups in China are genogroups 1 and 5. However, in this study, we isolated and identified a novel IPNV, IPNV-P202019, which belonged to genogroup 7. Here, a total of 200 specific-pathogen-free rainbow trout (10 g average weight) were divided randomly into four groups to investigate the distribution of different IPNV strains (genogroups 1, 5, and 7) in 9 tissues of rainbow trout by means of intraperitoneal (ip) injection. Fish in each group were monitored after 3-, 7-, 14-, 21- and 28- days post-infection (dpi). The study showed no mortality in all groups. The distribution of IPNV genogroups 1 and 5 was similar in different tissues and had a higher number of viral loads after 3, 7, or 14 dpi. However, the distribution of IPNV genogroup 7 was detected particularly in the spleen, head kidney, and feces and had a lower number of viral loads. The results of this study provide valid data for the distribution of IPNV in rainbow trout tissues and showed that IPNV genogroups 1 and 5 were still the prevalent genogroups of IPNV in China. Although rainbow trout carried IPNV genogroup 7, the viral load was too low to be pathogenic.


Birnaviridae Infections , Fish Diseases , Infectious pancreatic necrosis virus , Oncorhynchus mykiss , Animals , Infectious pancreatic necrosis virus/genetics , Birnaviridae Infections/veterinary , Genotype
17.
Microbiol Spectr ; 10(6): e0324522, 2022 12 21.
Article En | MEDLINE | ID: mdl-36409094

Previous inactivated vaccines against infectious hematopoietic necrosis (IHN) usually had a strong early immune protective effect but failed to provide long-term protection in rainbow trout (Oncorhynchus mykiss). To find a method for stabilizing the desired protective effect of IHN vaccines, we assessed the immune enhancement effect of four adjuvants on formaldehyde inactivated vaccine for IHN at 60 days postvaccination (dpv). The efficacy of a two-dose vaccination with the candidate adjuvant-formaldehyde inactivated vaccine for IHN was evaluated in terms of early protection and long-term protection (30 to 285 dpv). Neutralizing antibody titers were also measured at each time point. The Montanide GEL 02 PR (Gel 02) adjuvant significantly enhanced the immune protection provided by the IHN inactivated vaccine, whereas the immune-boosting effect of the other tested adjuvants lacked statistical significance. Both tested Gel 02-adjuvanted IHN inactivated vaccine dosages had a strong immune protection effect within 2 months postvaccination, with a relative percent of survival (RPS) of 89.01% to 100%, and the higher dosage provided complete protection at 204 dpv and a RPS of 60.79% on 285 dpv by reducing viral titers in rainbow trout. The neutralizing antibodies were observed only in vaccinated fish on 30 and 60 dpv. Through compatibility with an appropriate adjuvant, the highly immune protective effect of an IHN inactivated vaccine was prolonged from 60 dpv to at least 284 dpv; this novel adjuvant-IHN inactivated vaccine has promise as a commercial vaccine that provides the best available and longest duration of protection against IHN to rainbow trout. IMPORTANCE Infectious hematopoietic necrosis virus (IHNV) is one of the most serious pathogens threatening the global salmon and trout industry. However, there is currently only one commercialized infectious hematopoietic necrosis (IHN) vaccine, and it is inadequate for solving the global IHN problem. In this study, a promising adjuvanted inactivated vaccine with long-term protection was developed and comprehensively studied. We confirmed the presence of a late antiviral response stage in vaccinated rainbow trout that lacked detectable neutralizing antibodies, which are commonly recognized to be responsible for long-term specific protection in mammals. These findings further our understanding of unique features of fish immune systems and could lead to improved prevention and control of fish diseases.


Fish Diseases , Infectious hematopoietic necrosis virus , Oncorhynchus mykiss , Rhabdoviridae Infections , Viral Vaccines , Animals , Vaccines, Inactivated , Antibodies, Neutralizing , Formaldehyde , Fish Diseases/prevention & control , Rhabdoviridae Infections/prevention & control , Rhabdoviridae Infections/veterinary , Necrosis/drug therapy , Mammals
18.
Viruses ; 14(9)2022 09 19.
Article En | MEDLINE | ID: mdl-36146887

Both infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) are the causative agents of acute and highly contagious diseases of juvenile salmonids, resulting in severe economic losses to these cold-water fish globally. There is an urgent need to explore antiviral agents against IHNV and IPNV due to the lack of commercially available vaccines and antiviral drugs. More importantly, the co-infection of IHNV and IPNV is prevalent in nature, which not only aggravates extensive damage to the salmonids but also poses challenges to its prevention and control. The antiviral effects of a crude polysaccharide derived from seaweed (CSP) on IHNV and IPNV were evaluated in this study separately. Furthermore, the underlying antiviral mechanisms of CSP to IHNV and IPNV were analyzed, respectively. The results showed that CSP possessed excellent safety and good ability to inhibit IHNV, IPNV, and their co-infection. CSP preferred to act at the early stage of viral infection. The antiviral mechanism of CSP on IHNV is possibly involved in preventing viral attachment and release, while in IPNV, it is involved in suppressing viral attachment, entry, and release. Taken together, the results of this study shed new light on developing novel agents against viral infection in salmonid fish.


Birnaviridae Infections , Coinfection , Fish Diseases , Infectious hematopoietic necrosis virus , Infectious pancreatic necrosis virus , Oncorhynchus mykiss , Rhabdoviridae Infections , Seaweed , Animals , Antiviral Agents/pharmacology , Fish Diseases/drug therapy , Fish Diseases/prevention & control , Polysaccharides/pharmacology , Water/pharmacology
19.
Viruses ; 14(8)2022 08 06.
Article En | MEDLINE | ID: mdl-36016354

Infectious hematopoietic necrosis (IHN) and infectious pancreatic necrosis (IPN) are the most common viral diseases of salmon in aquaculture worldwide. The co-infection of rainbow trout (Oncorhynchus mykiss) with IHN virus (IHNV) and IPN virus (IPNV) is known to occur. To determine the influence of IPNV on IHNV in co-infection, rainbow trout were intraperitoneally (i.p.) injected with IPNV at different time intervals prior to, simultaneously to, or after IHNV infection. The replication of IHNV in the brain, gill, heart, liver, spleen, and head kidney was detected by real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that when rainbow trout were i.p. injected with IPNV prior to, simultaneously to, or after IHNV on 2 day (d), IHNV replication was inhibited (p < 0.05) in all collected tissues. Nevertheless, when rainbow trout were i.p. injected with IPNV after IHNV on 7 d (H7P), IHNV replication was only inhibited (p < 0.05) in the liver 14 d post-IHNV infection. Moreover, stronger antiviral responses occurred in all challenge groups. Our results suggest that IPNV can inhibit IHNV replication before or simultaneously with IHNV infection, and induce a stronger antiviral response, and that this inhibition is most sensitive in the liver. Early i.p. injection of IPNV can significantly reduce the mortality of rainbow trout, compared with the group only injected with IHNV.


Birnaviridae Infections , Coinfection , Fish Diseases , Infectious hematopoietic necrosis virus , Infectious pancreatic necrosis virus , Oncorhynchus mykiss , Rhabdoviridae Infections , Animals , Antiviral Agents/pharmacology , Birnaviridae Infections/veterinary , Coinfection/veterinary , Infectious pancreatic necrosis virus/physiology , Rhabdoviridae Infections/veterinary
20.
Front Immunol ; 13: 920065, 2022.
Article En | MEDLINE | ID: mdl-35812417

The effects of crude lentinan (CLNT) on the intestinal microbiota and the immune barrier were evaluated in rainbow trout (Oncorhynchus mykiss) infected by infectious hematopoietic necrosis virus (IHNV). The results showed that supplementary CLNT declined the rainbow trout mortality caused by IHNV, which suggested that CLNT has preventive effects on IHNV infection. IHNV destroyed intestinal integrity, as well as caused the intestinal oxidative and damage in rainbow trout. Supplementary CLNT significantly strengthened the intestinal immune barrier by declining intestinal permeability, as well as enhancing intestinal antioxidant and anti-inflammatory abilities in IHNV-infected rainbow trout (P<0.05). In addition, CLNT modified the aberrant changes of intestinal microbiota induced by IHNV, mainly represented by promoting the growths of Carnobacterium and Deefgea and inhibiting Mycobacterium and Nannocystis. Especially, supplementing with CLNT significantly promoted the growth of short-chain fatty acid-producing bacteria (P<0.05) and consequently increased the production of acetic acid, butanoic acid, and hexanoic acid in the intestine of IHNV-infected rainbow trout. Furthermore, it was speculated that CLNT could regulate the self-serving metabolic pathways of intestinal microbiota induced by IHNV, such as fatty acid metabolism and amino acid metabolism. Together, CLNT played the antiviral effects on IHNV infection through strengthening the intestinal immune barrier, as well as regulating intestinal microbiota and SCFA metabolism in rainbow trout. The present data revealed that CLNT exerted a promising prebiotic role in preventing the rainbow trout from IHNV infection.


Fish Diseases , Gastrointestinal Microbiome , Infectious hematopoietic necrosis virus , Oncorhynchus mykiss , Rhabdoviridae Infections , Animals , Dietary Supplements , Lentinan
...