Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 190
1.
Environ Sci Ecotechnol ; 21: 100420, 2024 Sep.
Article En | MEDLINE | ID: mdl-38765891

Chlorinated organic pollutants constitute a significant category of persistent organic pollutants due to their widespread presence in the environment, which is primarily attributed to the expansion of agricultural and industrial activities. These pollutants are characterized by their persistence, potent toxicity, and capability for long-range dispersion, emphasizing the importance of their eradication to mitigate environmental pollution. While conventional methods for removing chlorinated organic pollutants encompass advanced oxidation, catalytic oxidation, and bioremediation, the utilization of biochar has emerged as a prominent green and efficacious method in recent years. Here we review biochar's role in remediating typical chlorinated organics, including polychlorinated biphenyls (PCBs), triclosan (TCS), trichloroethene (TCE), tetrachloroethylene (PCE), organochlorine pesticides (OCPs), and chlorobenzenes (CBs). We focus on the impact of biochar material properties on the adsorption mechanisms of chlorinated organics. This review highlights the use of biochar as a sustainable and eco-friendly method for removing chlorinated organic pollutants, especially when combined with biological or chemical strategies. Biochar facilitates electron transfer efficiency between microorganisms, promoting the growth of dechlorinating bacteria and mitigating the toxicity of chlorinated organics through adsorption. Furthermore, biochar can activate processes such as advanced oxidation or nano zero-valent iron, generating free radicals to decompose chlorinated organic compounds. We observe a broader application of biochar and bioprocesses for treating chlorinated organic pollutants in soil, reducing environmental impacts. Conversely, for water-based pollutants, integrating biochar with chemical methods proved more effective, leading to superior purification results. This review contributes to the theoretical and practical application of biochar for removing environmental chlorinated organic pollutants.

2.
J Craniofac Surg ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38710032

This study aimed to assess the effectiveness of intraoperative computed tomography (ICT) in managing zygomatic complex (ZMC) fractures surgically. A total of 143 patients (84 men, 59 women; average age 37.13 y) undergoing surgical treatment for ZMC fractures participated in this retrospective cohort study, with 72 in the ICT group and 71 in the control group. There were no notable differences in gender, age, time from injury to surgery, and surgical duration between the two groups. The ICT group exhibited significantly fewer surgical approaches than the control group (1.39±0.519 vs. 2.07±0.617, P<0.001). Fixation points in the ICT group (1-point: 42, 2-point: 14, 3-point: 16) significantly differed from the control group (1-point: 15, 2-point: 17, 3-point: 39), P<0.001. Symmetry of reduction was assessed through immediate postoperative images, and stability was compared between immediate postoperative images and those taken at least 3 months later. Both assessments revealed no significant differences between the 2 groups. This study indicates that ICT facilitates prompt evaluation of ZMC reduction, minimizing the necessity for incisions and internal fixation, while achieving comparable reduction efficacy and long-term stability to conventional approaches.

3.
Cell Signal ; 119: 111180, 2024 Jul.
Article En | MEDLINE | ID: mdl-38642782

CXXC5, a zinc-finger protein, is known for its role in epigenetic regulation via binding to unmethylated CpG islands in gene promoters. As a transcription factor and epigenetic regulator, CXXC5 modulates various signaling processes and acts as a key coordinator. Altered expression or activity of CXXC5 has been linked to various pathological conditions, including tumorigenesis. Despite its known role in cancer, CXXC5's function and mechanism in ovarian cancer are unclear. We analyzed multiple public databases and found that CXXC5 is highly expressed in ovarian cancer, with high expression correlating with poor patient prognosis. We show that CXXC5 expression is regulated by oxygen concentration and is a direct target of HIF1A. CXXC5 is critical for maintaining the proliferative potential of ovarian cancer cells, with knockdown decreasing and overexpression increasing cell proliferation. Loss of CXXC5 led to inactivation of multiple inflammatory signaling pathways, while overexpression activated these pathways. Through in vitro and in vivo experiments, we confirmed ZNF143 and EGR1 as downstream transcription factors of CXXC5, mediating its proliferative potential in ovarian cancer. Our findings suggest that the CXXC5-ZNF143/EGR1 axis forms a network driving ovarian cell proliferation and tumorigenesis, and highlight CXXC5 as a potential therapeutic target for ovarian cancer treatment.


Cell Proliferation , DNA-Binding Proteins , Early Growth Response Protein 1 , Gene Expression Regulation, Neoplastic , Inflammation , Ovarian Neoplasms , Trans-Activators , Transcriptional Activation , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Cell Line, Tumor , Trans-Activators/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Animals , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Mice, Nude , Signal Transduction , Mice
4.
Chemosphere ; 355: 141852, 2024 May.
Article En | MEDLINE | ID: mdl-38556179

With industrialisation and the rapidly growing agricultural demand, many organic compounds have been leaked into the environment, causing serious damage to the biosphere. Persistent organic pollutants (POPs) are a type of toxic chemicals that are resistant to degradation through normal chemical, biological or photolytic approaches. With their stable chemical structures, POPs can be accumulated in the environment, and transported through wind and water, causing global environmental issues. Many researches have been conducted to remediate POPs contamination using various kinds of biological methods, and significant results have been seen. Microalgae-bacteria consortium is a newly developed concept for biological technology in contamination treatment, with the synergetic effects between microalgae and bacteria, their potential for pollutants degradation can be further released. In this review, two types of POPs (polychlorinated biphenyls and polycyclic aromatic hydrocarbons) are selected as the targeted pollutants to give a systematic analysis of the biodegradation through microalgae and bacteria, including the species selection, the identification of dominant enzymes, as well as the real application performance of the consortia. In the end, some outlooks and suggestions are given to further guide the development of applying microalgae-bacteria consortia in remediating POPs contamination. In general, the coculturing of microalgae and bacteria is a novel and efficient way to fulfil the advanced treatment of POPs in soil or liquid phase, and both monooxygenase and dioxygenase belonging to oxygenase play a vital role in the biodegradation of PCBs and PAHs. This review provides a general guide in the future investigation of biological treatment of POPs.


Environmental Pollutants , Microalgae , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Persistent Organic Pollutants , Biodegradation, Environmental , Microalgae/metabolism , Environmental Monitoring , Polychlorinated Biphenyls/analysis , Environmental Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/analysis
5.
Viruses ; 16(3)2024 02 21.
Article En | MEDLINE | ID: mdl-38543696

Interferon-inducible transmembrane protein 3 (IFITM3) is an antiviral factor that plays an important role in the host innate immune response against viruses. Previous studies have shown that IFITM3 is upregulated in various tissues and organs after avian reovirus (ARV) infection, which suggests that IFITM3 may be involved in the antiviral response after ARV infection. In this study, the chicken IFITM3 gene was cloned and analyzed bioinformatically. Then, the role of chicken IFITM3 in ARV infection was further explored. The results showed that the molecular weight of the chicken IFITM3 protein was approximately 13 kDa. This protein was found to be localized mainly in the cytoplasm, and its protein structure contained the CD225 domain. The homology analysis and phylogenetic tree analysis showed that the IFITM3 genes of different species exhibited great variation during genetic evolution, and chicken IFITM3 shared the highest homology with that of Anas platyrhynchos and displayed relatively low homology with those of birds such as Anser cygnoides and Serinus canaria. An analysis of the distribution of chicken IFITM3 in tissues and organs revealed that the IFITM3 gene was expressed at its highest level in the intestine and in large quantities in immune organs, such as the bursa of Fabricius, thymus and spleen. Further studies showed that the overexpression of IFITM3 in chicken embryo fibroblasts (DF-1) could inhibit the replication of ARV, whereas the inhibition of IFITM3 expression in DF-1 cells promoted ARV replication. In addition, chicken IFITM3 may exert negative feedback regulatory effects on the expression of TBK1, IFN-γ and IRF1 during ARV infection, and it is speculated that IFITM3 may participate in the innate immune response after ARV infection by negatively regulating the expression of TBK1, IFN-γ and IRF1. The results of this study further enrich the understanding of the role and function of chicken IFITM3 in ARV infection and provide a theoretical basis for an in-depth understanding of the antiviral mechanism of host resistance to ARV infection.


Interferons , Orthoreovirus, Avian , Animals , Chick Embryo , Interferons/genetics , Chickens , Orthoreovirus, Avian/genetics , Phylogeny , Antiviral Agents , Gene Expression , Virus Replication
6.
Bioresour Technol ; 395: 130349, 2024 Mar.
Article En | MEDLINE | ID: mdl-38242240

The development of more efficient advanced oxidation systems for serving various advanced treatment of wastewater is quite necessary and urgent. In this study, a nano-zero valent iron/periodate (nZVI-BC/PI) advanced oxidation system has been constructed, achieving a rapid degradation of acetaminophen (ACT, 1 mg/L) within 1 min (100 % at pH = 11) at low temperature (5℃). This system shows a great degradation in a wide range of pH (1 âˆ¼ 11), improving the pH limitation of PI oxidation system. During the reaction process, ·OH as the main active species collaborate with 1O2, Fe (IV), ·O2- and electron transfer to degrade ACT. In this system, iron ion leaching is low (0.019 mg/L), ACT was effectively degraded (74.36 %∼97.32 %) under different water, moreover, the material has an expected recyclability. The research provides a significant guidance for the advanced treatment of wastewater especially in cold regions.


Iron , Periodic Acid , Water Pollutants, Chemical , Acetaminophen , Temperature , Wastewater , Charcoal , Water Pollutants, Chemical/analysis
7.
Water Res ; 251: 121120, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38237459

Waste activated sludge (WAS) as one of the major pollutants with a significant annual production, has garnered significant attention regarding its treatment and utilization. If improperly discharged, it not only caused environmental pollution but also led to the wastage of valuable resources. In this study, the microalgae growth and lipid accumulation using waste activated sludge extracts (WASE) under different temperature conditions were investigated. The highest lipid content (59.13%) and lipid productivity (80.41 mg L-1 d-1) were obtained at cultivation temperatures of 10 and 25 °C, respectively. It was found that microalgae can effectively utilize TN/TP/NH4+-N and other nutrients of WASE. The highest utilization rates of TP, TN and NH4+-N were achieved at a cultivation temperature of 10 °C, reaching 84.97, 77.49 and 92.32%, respectively. The algal fatty acids had carbon chains predominantly ranging from C14 to C18, making them suitable for biodiesel production. Additionally, a comprehensive analysis of transcriptomics and metabolomics revealed up-regulation of genes associated with triglyceride assembly, the antioxidant system of algal cells, and cellular autophagy, as well as the accumulation of metabolites related to the tricarboxylic acid (TCA) cycle and lipids. This study offers novel insights into the microscopic mechanisms of microalgae culture using WASE and approaches for the resource utilization of sludge.


Microalgae , Sewage , Lipids , Biofuels , Temperature , Gene Expression Profiling , Biomass
8.
Water Res ; 251: 121134, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38244297

A coupling technology for lipid production and adsorption of rare earth elements (REEs) using microalgae was studied in this work. The microalgae cell growth, lipid production, biochemical parameters and lipid profiles were investigated under different REEs (Ce3+, Gd3+and La3+). The results showed that the maximum lipid production was achieved at different concentrations of REEs, with lipid productivities of 300.44, 386.84 and 292.19 mg L-1 d-1 under treatment conditions of 100 µg L-1 Ce3+, 250 µg L-1 Gd3+ and 1 mg L-1 La3+, respectively. Moreover, the adsorption efficiency of Ce3+, Gd3+ and La3+exceeded 96.58 %, 93.06 % and 91.3 % at concentrations of 25-1000 µg L-1, 100-500 µg L-1 and 0.25-1 mg L-1, respectively. In addition, algal cells were able to adsorb 66.2 % of 100 µg L-1 Ce3+, 48.4 % of 250 µg L-1 Gd3+ and 59.9 % of 1 mg L-1 La3+. The combination of extracellular polysaccharide and algal cell wall could adsorb 25.2 % of 100 µg L-1 Ce3+, 44.5 % of 250 µg L-1 Gd3+ and 30.5 % of 1 mg L-1 La3+, respectively. These findings indicated that microalgae predominantly adsorbed REEs through the intracellular pathway. This study elucidates the mechanism of effective lipid accumulation and adsorption of REEs by microalgae under REEs stress conditions. It establishes a theoretical foundation for the efficient microalgae lipid production and REEs recovery from wastewater or waste residues containing REEs.


Metals, Rare Earth , Microalgae , Biofuels , Adsorption , Lipids
9.
Sci Rep ; 14(1): 261, 2024 01 02.
Article En | MEDLINE | ID: mdl-38168000

An enzyme-free sandwich amperometric immunosensor based on bimetallic Pt/Ag nanoparticle (Pt/AgNPs)-functionalized chitosan (Chi)-modified multiwalled carbon nanotubes (MWCNTs) as dual signal amplifiers and Chi-modified MWCNTs (MWCNTs-Chi) as substrate materials was developed for ultrasensitive detection of fowl adenovirus group I (FAdV-I). MWCNTs have a large specific surface area, and many accessible active sites were formed after modification with Chi. Hence, MWCNTs-Chi, as a substrate material for modifying glassy carbon electrodes (GCEs), could immobilize more antibodies (fowl adenovirus group I-monoclonal antibody, FAdV-I/MAb). Multiple Pt/AgNPs were attached to the surface of MWCNTs-Chi to generate MWCNTs-Chi-Pt/AgNPs with high catalytic ability for the reaction of H2O2 and modified active sites for fowl adenovirus group I-polyclonal antibody (FAdV-I/PAb) binding. Amperometric i-t measurements were employed to characterize the recognizability of FAdV-I. Under optimal conditions, and the developed immunosensor exhibited a wide linear range (100.93 EID50 mL-1 to 103.43 EID50 mL-1), a low detection limit (100.67 EID50 mL-1) and good selectivity, reproducibility and stability. This immunosensor can be used in clinical sample detection.


Biosensing Techniques , Blood Group Antigens , Metal Nanoparticles , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Metal Nanoparticles/chemistry , Electrochemical Techniques , Reproducibility of Results , Hydrogen Peroxide , Immunoassay , Silver , Antigens, Fungal , Antibodies, Monoclonal , Adenoviridae , Limit of Detection , Gold/chemistry
10.
Int J Infect Dis ; 140: 52-61, 2024 Mar.
Article En | MEDLINE | ID: mdl-38163619

OBJECTIVES: We conducted a systematic analysis of the notifiable rickettsial diseases in humans in China during 1950-2022. METHODS: We utilized descriptive statistics to analyze the epidemiological characteristics, clinical manifestations, and diagnostic characteristics of typhus group rickettsiosis (TGR) and scrub typhus (ST) cases. RESULTS: Since the 1950s, there have been variations in the incidence rate of TGR and ST in China, with a downtrend for TGR and an uptrend for ST. The South became a high-incidence area of TGR, whereas the North was previously the high-incidence area. ST cases were concentrated in the South and the geographic area of ST spread northward and westward. The seasonality of TGR and ST were similar in the South but distinct in the North. Most TGR and ST cases were reported by county-level medical institutions, whereas primary institutions reported the least. Delayed diagnosis was associated with fatal outcomes of TGR and ST. Cases in low-incidence provinces, confirmed by laboratory tests and reported from county/municipal-level institutions had higher odds of delayed diagnoses. CONCLUSIONS: Our study revealed significant changes in the epidemiological characteristics of TGR and ST in China, which can provide useful information to enhance the control and prevention strategies of rickettsial diseases in China.


Rickettsia Infections , Scrub Typhus , Typhus, Epidemic Louse-Borne , Humans , Scrub Typhus/diagnosis , Scrub Typhus/epidemiology , Typhus, Epidemic Louse-Borne/epidemiology , Rickettsia Infections/diagnosis , Rickettsia Infections/epidemiology , China/epidemiology , Incidence
11.
Bioresour Technol ; 393: 130132, 2024 Feb.
Article En | MEDLINE | ID: mdl-38040302

In this study, active sampling technology was used to collect microplastics (MPs) and microorganisms simultaneously on haze days in Harbin, China. Airborne MPs concentrations in Junior high school (162.4 ± 44.6 particles/m3) with high vehicular and pedestrian traffic was higher than those in University (63.2 ± 21.8 particles/m3) and Park (12.8 ± 5.5 particles/m3). More airborne MPs were detected in the night samples than in the morning and noon samples. The majority (69.06 %) of airborne MPs measured less than 100 µm, with fibers (69.4 %) being the predominant form. Polyesters and polyethylene were the dominant polymers. In addition, airborne MPs concentrations were positively correlated with microorganisms and PM10 concentrations, and the health hazards associated with microorganisms and MPs exposure via inhalation far exceeded those associated with skin contact, which can serve as a theoretical foundation for considering MPs as indicators of air quality in the future.


Microplastics , Water Pollutants, Chemical , Humans , Plastics/adverse effects , China , Environmental Monitoring , Water Pollutants, Chemical/analysis
12.
Infect Immun ; 92(1): e0022923, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38099659

Legionella is a common intracellular parasitic bacterium that infects humans via the respiratory tract, causing Legionnaires' disease, with fever and pneumonia as the main symptoms. The emergence of highly virulent and azithromycin-resistant Legionella pneumophila is a major challenge in clinical anti-infective therapy. The CRISPR-Cas acquired immune system provides immune defense against foreign nucleic acids and regulates strain biological functions. However, the distribution of the CRISPR-Cas system in Legionella and how it regulates gene expression in L. pneumophila remain unclear. Herein, we assessed 915 Legionella whole-genome sequences to determine the distribution characteristics of the CRISPR-Cas system and constructed gene deletion mutants to explore the regulation of the system based on growth ability in vitro, antibiotic sensitivity, and intracellular proliferation of L. pneumophila. The CRISPR-Cas system in Legionella was predominantly Type II-B and was mainly concentrated in the genome of L. pneumophila ST1 strains. The Type II-B CRISPR-Cas system showed no effect on the strain's growth ability in vitro but significantly reduced resistance to azithromycin and decreased proliferation ability due to regulation of the lpeAB efflux pump and the Dot/Icm type IV secretion system. Thus, the Type II-B CRISPR-Cas system plays a crucial role in regulating the virulence of L. pneumophila. This expands our understanding of drug resistance and pathogenicity in Legionella, provides a scientific basis for the prevention of Legionnaires' disease outbreaks and the rational use of clinical drugs, and facilitates effective treatment of Legionnaires' disease.


Legionella pneumophila , Legionella , Legionnaires' Disease , Humans , Legionnaires' Disease/microbiology , Azithromycin/pharmacology , CRISPR-Cas Systems , Legionella pneumophila/genetics
13.
Front Microbiol ; 14: 1298037, 2023.
Article En | MEDLINE | ID: mdl-38075862

In this study, a total of 179 ticks infesting ruminant livestock, including 166 Haemaphysalis longicornis ticks and 13 Rhipicephalus microplus ticks were collected from Yingshan county of Hubei province, China in 2021-2022. PCR testing and sequence analysis revealed that the ticks infected with various species of pathogens including Rickettsia (R. japonica), Anaplasma (A. bovis, A. ovis, A. platys, and Ca. A. boleense), Ehrlichia (E. minasensis and Ehrlichia sp.), Theileria (T. orientalis and T. luwenshuni), and Babesia (B. bigemina). The infection rates of these pathogens were 0.56, 16.76, 7.26, 2.79 and 0.56%. respectively, while only 3 of 13 R. microplus ticks were detected to be infected wth Ehrlichia sp., A. bove., or T. luwenshuni. Our results revealed that a variety of tick-borne pathogens highly carried by these ticks, specially Ha. longicornis. Therefore, it is necessary to make effective control of the ticks and the tick-borne diseases in the County.

14.
Viruses ; 15(12)2023 Nov 29.
Article En | MEDLINE | ID: mdl-38140587

Avian reovirus (ARV) infection is prevalent in farmed poultry and causes viral arthritis and severe immunosuppression. The spleen plays a very important part in protecting hosts against infectious pathogens. In this research, transcriptome and translatome sequencing technology were combined to investigate the mechanisms of transcriptional and translational regulation in the spleen after ARV infection. On a genome-wide scale, ARV infection can significantly reduce the translation efficiency (TE) of splenic genes. Differentially expressed translational efficiency genes (DTEGs) were identified, including 15 upregulated DTEGs and 396 downregulated DTEGs. These DTEGs were mainly enriched in immune regulation signaling pathways, which indicates that ARV infection reduces the innate immune response in the spleen. In addition, combined analyses revealed that the innate immune response involves the effects of transcriptional and translational regulation. Moreover, we discovered the key gene IL4I1, the most significantly upregulated gene at both the transcriptional and translational levels. Further studies in DF1 cells showed that overexpression of IL4I1 could inhibit the replication of ARV, while inhibiting the expression of endogenous IL4I1 with siRNA promoted the replication of ARV. Overexpression of IL4I1 significantly downregulated the mRNA expression of IFN-ß, LGP2, TBK1 and NF-κB; however, the expression of these genes was significantly upregulated after inhibition of IL4I1, suggesting that IL4I1 may be a negative feedback effect of innate immune signaling pathways. In addition, there may be an interaction between IL4I1 and ARV σA protein, and we speculate that the IL4I1 protein plays a regulatory role by interacting with the σA protein. This study not only provides a new perspective on the regulatory mechanisms of the innate immune response after ARV infection but also enriches the knowledge of the host defense mechanisms against ARV invasion and the outcome of ARV evasion of the host's innate immune response.


Chickens , Orthoreovirus, Avian , Animals , Transcriptome , Orthoreovirus, Avian/genetics , Spleen , Immunity, Innate , Signal Transduction , Gene Expression Profiling
15.
Front Microbiol ; 14: 1237438, 2023.
Article En | MEDLINE | ID: mdl-38033564

Interferon-alpha inducible protein 6 (IFI6) is an important interferon-stimulated gene. To date, research on IFI6 has mainly focused on human malignant tumors, virus-related diseases and autoimmune diseases. Previous studies have shown that IFI6 plays an important role in antiviral, antiapoptotic and tumor-promoting cellular functions, but few studies have focused on the structure or function of avian IFI6. Avian reovirus (ARV) is an important virus that can exert immunosuppressive effects on poultry. Preliminary studies have shown that IFI6 expression is upregulated in various tissues and organs of specific-pathogen-free chickens infected with ARV, suggesting that IFI6 plays an important role in ARV infection. To analyze the function of avian IFI6, particularly in ARV infection, the chicken IFI6 gene was cloned, a bioinformatics analysis was conducted, and the roles of IFI6 in ARV replication and the innate immune response were investigated after the overexpression or knockdown of IFI6 in vitro. The results indicated that the molecular weight of the chicken IFI6 protein was approximately 11 kDa and that its structure was similar to that of the human IFI27L1 protein. A phylogenetic tree analysis of the IFI6 amino acid sequence revealed that the evolution of mammals and birds was clearly divided into two branches. The evolutionary history and homology of chickens are similar to those of other birds. Avian IFI6 localized to the cytoplasm and was abundantly expressed in the chicken lung, intestine, pancreas, liver, spleen, glandular stomach, thymus, bursa of Fabricius and trachea. Further studies demonstrated that IFI6 overexpression in DF-1 cells inhibited ARV replication and that the inhibition of IFI6 expression promoted ARV replication. After ARV infection, IFI6 modulated the expression of various innate immunity-related factors. Notably, the expression patterns of MAVS and IFI6 were similar, and the expression patterns of IRF1 and IFN-ß were opposite to those of IFI6. The results of this study further advance the research on avian IFI6 and provide a theoretical basis for further research on the role of IFI6 in avian virus infection and innate immunity.

16.
ACS Nano ; 17(21): 21056-21072, 2023 11 14.
Article En | MEDLINE | ID: mdl-37856828

Nanoparticles (NPs) released from engineered materials or combustion processes as well as persistent herpesvirus infection are omnipresent and are associated with chronic lung diseases. Previously, we showed that pulmonary exposure of a single dose of soot-like carbonaceous NPs (CNPs) or fiber-shaped double-walled carbon nanotubes (DWCNTs) induced an increase of lytic virus protein expression in mouse lungs latently infected with murine γ-herpesvirus 68 (MHV-68), with a similar pattern to acute infection suggesting virus reactivation. Here we investigate the effects of a more relevant repeated NP exposure on lung disease development as well as herpesvirus reactivation mechanistically and suggest an avenue for therapeutic prevention. In the MHV-68 mouse model, progressive lung inflammation and emphysema-like injury were detected 1 week after repetitive CNP and DWCNT exposure. NPs reactivated the latent herpesvirus mainly in CD11b+ macrophages in the lungs. In vitro, in persistently MHV-68 infected bone marrow-derived macrophages, ERK1/2, JNK, and p38 MAPK were rapidly activated after CNP and DWCNT exposure, followed by viral gene expression and increased viral titer but without generating a pro-inflammatory signature. Pharmacological inhibition of p38 activation abrogated CNP- but not DWCNT-triggered virus reactivation in vitro, and inhibitor pretreatment of latently infected mice attenuated CNP-exposure-induced pulmonary MHV-68 reactivation. Our findings suggest a crucial contribution of particle-exposure-triggered herpesvirus reactivation for nanomaterial exposure or air pollution related lung emphysema development, and pharmacological p38 inhibition might serve as a protective target to alleviate air pollution related chronic lung disease exacerbations. Because of the required precondition of latent infection described here, the use of single hit models might have severe limitations when assessing the respiratory toxicity of nanoparticle exposure.


Emphysema , Nanoparticles , Nanotubes, Carbon , Pneumonia , Animals , Mice , Lung , Pneumonia/chemically induced , Nanoparticles/toxicity
17.
J Phys Condens Matter ; 36(4)2023 Oct 25.
Article En | MEDLINE | ID: mdl-37832557

In this paper, an anisotropic magnetoresistive (AMR) thin film sensor which can be used for magnetic scale has been prepared, and its output voltage is about 4.7-4.9 mV V-1. On the basis of the Stoner-Wohlfarth model and with considering the non-uniformity of the demagnetizing field along the width direction of the strips, both the static and dynamic responses of the AMR sensors have been calculated. The results have shown that the calculated results are in agreement with the experimental data. The magnetization rotation in the magnetic sensor strongly depends on the nonuniform demagnetizing field along the width direction. The magnetization at the center is easily rotated into the field direction, and the magnetization at the edge is difficult to be rotated. The smaller the width of the magnetoresistive strip is, the larger both the demagnetizing field at the edge and the saturation field of the magnetic sensor are. The results are helpful for understanding the magnetization rotation of magnetic sensors and developing the magnetic sensors with high performance.

18.
Int Immunopharmacol ; 124(Pt A): 110942, 2023 Nov.
Article En | MEDLINE | ID: mdl-37716160

Peritoneal macrophages (PMs), which resided in peritoneal cavity, are crucial to maintain tissue homeostasis and immunity. Macrophage self-renewal and polarization states are critical for PM population homeostasis and function. However, the underlying molecular mechanism that regulates self-renewal and polarization of PMs is still unclear and needs to be explored. Here, we demonstrated that PMs self-renewal was stimulated by granulocyte macrophage colony-stimulating factor (GM-CSF), but not by macrophage colony-stimulating factor (M-CSF). Pharmacological inhibition of Bromodomain & Extraterminal (BET) Proteins by either JQ1 or ARV-825 significantly reduced GM-CSF-dependent peritoneal macrophage self-renewal by abrogating cell proliferation and decreasing self-renewal-related gene expression, such as MYC and Klf4, at transcriptional and protein levels. In addition, transcriptomic analysis showed that JQ1 blocked alternative PMs polarization by downregulating key transcriptional factor IRF4 expression, but not the activation of AKT or STAT6 in PMs. These findings illustrated that the significance of BET family proteins in GM-CSF-induced PMs self-renewal and IL-4-induced alternative polarization.

19.
Bioresour Technol ; 387: 129702, 2023 Nov.
Article En | MEDLINE | ID: mdl-37604256

This study proposes a new model in which ethanol and acetate produced by dark fermentation are processed by Clostridium kluyveri for chain elongation to produce caproate with an addition of biochar prepared from cornstalk residues after acid pretreatment and enzymatic hydrolysis (AERBC) in the dark fermentation and chain elongation processes. The results show a 6-25% increase in hydrogen production in dark fermentation with adding AERBC, and the maximum concentration of caproate in the new model reached 1740 mg/L, 61% higher than that in the control group. In addition, caproate was obtained by dark fermentation, using liquid metabolites as substrates with an initial pH range of 6.5-7.5. Finally, the electron balance and electron transfer efficiency in the new model were analyzed, and the role of AERBC in dark fermentation and chain elongation was investigated. This study provides a new reference for the use of dark-fermented liquid metabolites and cornstalk residue.


Caproates , Clostridium kluyveri , Hydrogen
20.
Water Res ; 239: 120027, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37167853

Thallium (Tl+) is a trace metal with extreme toxicity and is highly soluble in water, posing a great risk to ecological and human safety. This work aimed to investigate the role played by Tl+ in regulating lipid accumulation in microalgae and the removal efficiency of Tl+. The effect of Tl+ on the cell growth, lipid production and Tl+ removal efficiency of Parachlorella kessleri R-3 was studied. Low concentrations of Tl+ had no significant effect on the biomass of microalgae. When the Tl+ concentration exceeded 5 µg L-1, the biomass of microalgae showed significant decrease. The highest lipid content of 63.65% and lipid productivity of 334.55 mg L-1 d-1 were obtained in microalgae treated with 10 and 5 µg L-1 Tl+, respectively. Microalgae can efficiently remove Tl+ and the Tl+ removal efficiency can reach 100% at Tl+ concentrations of 0-25 µg L-1. The maximum nitric oxide (NO) level of 470.48 fluorescence intensity (1 × 106 cells)-1 and glutathione (GSH) content of 343.51 nmol g-1 (fresh alga) were obtained under 5 µg L-1 Tl+ stress conditions. Furthermore, the exogenous donor sodium nitroprusside (SNP) supplemented with NO was induced in microalgae to obtain a high lipid content (59.99%), lipid productivity (397.99 mg L-1 d-1) and GSH content (430.22 nmol g-1 (fresh alga)). The corresponding analysis results indicated that NO could participate in the signal transduction pathway through modulation of reactive oxygen species (ROS) signaling to activate the antioxidant system by increasing the GSH content to eliminate oxidative damage induced by Tl+ stress. In addition, NO regulation of ROS signaling may enhance transcription factors associated with lipid synthesis, which stimulates the expression of genes related to lipid synthesis, leading to increased lipid biosynthesis in microalgae. Moreover, it was found that the change in Tl+ had little effect on the fatty acid components and biodiesel properties. This study showed that Tl+ stress can promote lipid accumulation in microalgae for biodiesel production and simultaneously effectively remove Tl+, which provided evidence that NO was involved in signal transduction and antioxidant defense, and improved the understanding of the interrelation between NO and ROS to regulate lipid accumulation in microalgae.


Metals, Heavy , Microalgae , Humans , Thallium/metabolism , Antioxidants , Reactive Oxygen Species/metabolism , Biodegradation, Environmental , Biofuels , Glutathione , Lipids , Signal Transduction , Biomass
...