Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
Adv Biol (Weinh) ; 7(6): e2200293, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36642820

RESUMEN

Immunotherapy has become a mainstay of cancer therapy. Since chimeric antigen receptor (CAR) T immunotherapy achieves unprecedented success in curing hematological malignancies, the possibility of it revolutionizing the paradigm of solid tumors has aroused increasing attention. However, the restricted accessibility to tumor parenchyma, the immunosuppressive tumor microenvironment, and antigen heterogeneity of solid tumors make it difficult to replicate its success. Therefore, dynamic evaluation of CAR T cells' tumor accessibility, intratumoral viability, and anti-tumor cytotoxicity is necessary to facilitate its translation to solid tumors. Besides, real-timely imaging above events in vivo can help evaluate therapeutic responses and optimize CAR T immunotherapy for solid tumors. Nuclear imaging, including positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging, is frequently applied for evaluating adoptive cell therapies owing to its excellent sensitivity, high tissue penetration, and great translation potential. In addition, quantitative analysis can be performed in dynamic and noninvasive patterns. This review focuses on recent advances in PET/SPECT technologies and imaging probes in monitoring CAR T cells' migration, viability, and cytotoxicity to solid tumors post-administration. Prospects of what should be done in the next stage to promote CAR T therapy's application in solid tumors are also discussed.


Asunto(s)
Antineoplásicos , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Distribución Tisular , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T , Linfocitos T/metabolismo , Tomografía Computarizada por Rayos X , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Inmunoterapia/efectos adversos , Microambiente Tumoral
3.
Oncol Lett ; 24(2): 281, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35814830

RESUMEN

Long non-coding RNAs (lncRNAs) are important biological factors that contribute to the initiation and progression of different types of cancer, including gastric, bladder and colorectal cancer. Small nucleolar RNA host gene 3 (SNHG3) has been implicated in prostate cancer (PCa) progression. However, the expression pattern and function of SNHG3 in PCa remain unclear, impeding the development of novel treatment strategies for this cancer. The present study aimed to investigate a combination of molecular and biochemical approaches to determine the role of SNHG3 in patients at different stages of disease, and elucidate the pathway by which SNHG3 affects PCa progression. A Cell Counting Kit-8 assay was used to assess cell proliferation. Transwell assays were used to analyze cell migration and invasion. Reverse transcription-quantitative PCR and western blotting were used to evaluate the expression levels of RNAs and proteins, respectively. The results demonstrated that SNHG3 expression was upregulated in PCa tissues downloaded from The Cancer Genome Atlas database, which was associated with poor prognosis. Furthermore, cell proliferation, migration and invasion were significantly inhibited following SNHG3 knockdown in vitro, the effects of which were reversed following overexpression of SNHG3 in PCa cells. Bioinformatic analysis revealed that microRNA (miRNA/miR)-1827 was a downstream target of SNHG3. The direct interaction between SNHG3 and miR-1827 was validated via the dual-luciferase reporter and RNA immunoprecipitation assays. Pearson's correlation analysis demonstrated that SNHG3 expression was negatively correlated with miR-1827 expression at different stages of PCa. Furthermore, rescue assays indicated that cotransfection with small interfering-SNHG3 and miR-1827 inhibitor reversed the effects of SNHG3 knockdown on cell proliferation, migration and invasion. In addition, SNHG3 knockdown in vivo suppressed tumor growth. Notably, lncRNA SNHG3 promoted PCa progression through miR-1827 via the Wnt/AKT/mTOR pathway. Taken together, the results of the present study suggest that SNHG3 promotes PCa progression by sponging miR-1827, indicating that SNHG3 may be a promising diagnostic and therapeutic target of PCa.

4.
Biomed Pharmacother ; 146: 112570, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34959114

RESUMEN

We developed an innovative method to include quercetin into alpha-calcium sulphate hemihydrate/nano-hydroxyapatite (α-CSH/n-HA), to prepare a novel quercetin-containing α-CSH/n-HA composite (Q-α-CSH/n-HA). The physicochemical properties, and ability of Q-α-CSH/n-HA to promote cell proliferation, migration, and osteogenic differentiation of bone marrow stem cells (BMSCs) in vitro were examined. Further, the potential of Q-α-CSH/n-HA to promote bone defect repair was studied using a Sprague-Dawley rat model of critical tibial defects. Imaging was conducted by radiography and micro-CT, and bone defect repairs were observed by histopathological staining. Addition of quercetin clearly increased the porosity of the degraded composite, which elevated the cell proliferation rate, migration ability, osteogenesis differentiation, and mineralisation of BMSCs. Further, quercetin-containing composite increased the expression levels of OSX, RUNX2, OCN, ALP, BMP-2, OPN, BSP, SMAD2, and TGF-ß in BMSCs, while it downregulated TNF-α. X-ray and micro-CT imaging showed that the quercetin-containing composite significantly enhanced bone defect repair and new bone in formation. Haematoxylin and eosin, Goldner, and Safranin O staining also showed that quercetin significantly increased new bone generation and promoted composite degradation and absorption. Moreover, immunofluorescence assay revealed that quercetin significantly increased the number of RUNX2/OSX/OCN-positive cells. Overall, our data demonstrate that Q-α-CSH/n-HA has excellent biocompatibility, bone conductivity, and osteo-induction performance in vitro and mediates enhanced overall repair effects and bone reconstruction in vivo, indicating that it is a promising artificial bone graft to promote bone regeneration.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Sulfato de Calcio/farmacología , Osteogénesis/efectos de los fármacos , Quercetina/farmacología , Tibia/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Durapatita/química , Masculino , Ratas , Ratas Sprague-Dawley , Células Madre/efectos de los fármacos
5.
Mater Sci Eng C Mater Biol Appl ; 131: 112496, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34857282

RESUMEN

To improve the osteoinductivity, antibacterial activity, and clinical application of calcium sulfate hemihydrate (CSH), carboxymethyl chitosan zinc (CMCS-Zn) and α-CSH were prepared using different mass ratios. The setting time and injectability of the CMCS-Zn/α-CSH composite were increased with increasing CMCS-Zn content. After adding different amounts of CMCS-Zn to α-CSH, the fine lamellar structure of CMCS-Zn was found by scanning electron microscopy (SEM), which is evenly distributed in the matrix of α-CSH. With the increase of CMCS-Zn, the pores on the surface gradually increased. After mixing CMCS-Zn and α-CSH, no new phase was measured by X-ray diffraction (XRD) and Fourier transform (FTIR) spectroscopy. The degradation rate of CMCS-Zn/α-CSH decreased with increasing CMCS-Zn content, and the pH was stable during the degradation process. The release of Zn2+ increased with increasing CMCS-Zn content, while the release of Ca2+ decreased. Extracts of CMCS-Zn/α-CSH composites up-regulated the osteoinduction and migration of rat bone marrow stem cells. The antibacterial ability of CMCS-Zn/α-CSH was evaluated as a function of CMCS-Zn content. In the rat bone defect model, 5% CMCS-Zn/α-CSH group revealed a higher volume and density of trabeculae by micro-CT 8 weeks after the operation. Therefore, CMCS-Zn/α-CSH was demonstrated to be an adjustable, degradable, substitute biomaterial (with osteogenesis-promoting effects) for use in bone defects, which also has antibacterial activity that can suppress bone infection.


Asunto(s)
Sulfato de Calcio , Quitosano , Animales , Materiales Biocompatibles/farmacología , Osteogénesis , Ratas , Zinc
6.
Int J Mol Med ; 44(4): 1281-1288, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31432131

RESUMEN

Implant­associated infection (IAI), a common condition marked by progressive inflammation and bone destruction, is mentally and financially devastating to those it affects, causing severe morbidity, prolonged hospital admissions, significant hospital costs and, in certain cases, mortality. Aspirin, a popular synthetic compound with a history of >100 years, is antipyretic, anti­inflammatory and analgesic. It is the most active component of non­steroidal anti­inflammatory drugs. However, the effects of aspirin on IAI remain unknown. In the present study, an IAI animal model was used, in which a stainless steel pin coated with Staphylococcus aureus was implanted through the left shaft of the tibia in mice. The animals were then randomized into five groups and subjected respectively to IAI, IAI + 15 mg aspirin treatment, IAI + 30 mg aspirin treatment, IAI + 60 mg aspirin treatment and IAI + 120 mg aspirin treatment groups. Aspirin was injected intraperitoneally twice daily for 11 days. Micro­CT and histological assays were performed to assess the effects of aspirin on IAI. It was found that aspirin reduced osteolysis and periosteal reaction, inhibited the activation of osteoclasts, promoted the activation of osteoblasts and facilitated healing of the infected fracture.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Aspirina/uso terapéutico , Prótesis e Implantes/efectos adversos , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Infecciones Relacionadas con Prótesis/etiología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunohistoquímica , Ratones , Osteólisis , Infecciones Relacionadas con Prótesis/diagnóstico , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/etiología , Staphylococcus aureus , Microtomografía por Rayos X
7.
Exp Ther Med ; 17(1): 847-856, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30651871

RESUMEN

Mild-to-moderate closed-head injury (mmCHI) is an acute disease induced by high-altitudes. It is general practice to transfer patients to lower altitudes for treatment, but the pathophysiological changes at different altitudes following mmCHI remain unknown. The present study simulated acute high-altitude exposure (6,000 m above sea level) in rats to establish a model of mmCHI and recorded their vital signs. The rats were then randomly assigned into different altitude exposure groups (6,000, 4,500 and 3,000 m) and neurological severity score (NSS), body weight (BW), brain magnetic resonance imaging (MRI), brain water content (BWC) and the ratio of BW/BWC at 6, 12 and 24 h following mmCHI, and the glial fibrillary acidic protein levels were analysed in all groups. The results revealed that within the first 24 h following acute high-altitude exposure, mmCHI induced dehydration, brain oedema and neuronal damage. Brain injury in rats was significantly reversed following descent to 4,500 m compared with the results from 6,000 or 3,000 m. The results indicated that subjects should be transported as early as possible. Furthermore, avoiding large-span descent altitude was beneficial to reduce neurological impairment. The examination of brain-specific biomarkers and MRI may further be useful in determining the prognosis of high-altitude mmCHI. These results may provide guidance for rescuing high altitude injuries.

8.
Nano Lett ; 19(2): 1204-1209, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30682253

RESUMEN

Silicon photonics has been a very active area of research especially in the past two decades in order to meet the ever-increasing demand for more computational power and faster device speeds and their natural compatibility with complementary metal-oxide semiconductor. In order to develop Si as a useful photonics material, essential photonic components such as light sources, waveguides, wavelength convertors, modulators, and detectors need to be developed and integrated. However, due to the indirect electronic bandgap of Si, conventional light emission devices such as light-emitting diodes and lasers cannot be built. Therefore, there has been considerable interest in developing Si-based Raman lasers, which are nonlinear devices and require large stimulated Raman scattering (SRS) in an optical cavity. However, due to the low quantum yield of SRS in Si, Raman lasers have very large device footprints and high lasing threshold, making them unsuitable for faster, smaller, and energy-efficient devices. Here, we report strong SRS and extremely high Raman gain in Si nanowire optical cavities in the visible region with measured SRS threshold as low as 30 kW/cm2. At cavity mode resonance, light is confined into a low mode volume and high intensity electromagnetic mode inside the Si nanowire due to its high refractive index, which leads to strong SRS at low pump intensities. Electromagnetic calculations reveal greater than 6 orders of magnitude increase in Raman gain coefficient at 532 nm pump wavelength, compared to the gain value at 1.55 µm wavelength reported in literature, despite the 108 higher losses at 532 nm. Because of the high gain in such small structures, we believe that this is a significant first step in realizing a monolithically integrable nanoscale low-powered Si Raman laser.

9.
Neuropathology ; 38(5): 484-492, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30187543

RESUMEN

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Due to the heterogeneity of human TBI, none of the available animal models can reproduce the entire spectrum of TBI. This study was designed to develop a novel-graded TBI rat model which is induced by closed head impacts (CHI) with reproducible brain damage and neurological dysfunction. A total of 75 male Sprague-Dawley rats (200 ± 20 g) were randomly equally divided into five groups: the Sham, 0.5, 0.6, 0.7 and 0.8 MPa groups. A custom-made, air-driven injury apparatus was used to induce CHIs (from 0.5 to 0.8 MPa). The kinematic parameters during the procedure were recorded by a force sensor and a high-speed camera. Mortality rate, duration of unconsciousness (latency period of righting reflex), modified neurological severity score (mNSS) and whole brain water content (BWC) were examined. Pathological changes were evaluated by hematoxylin-eosin (HE) stain and immunohistochemical stain for amyloid precursor protein (APP). The impact force and speed were 785.3 ± 14.12 N and 5.71 m/s in the 0.5 MPa group, 837.72 ± 10.41 N and 6.06 m/s in the 0.6 MPa group, 857.65 ± 11.11 N and 6.25 m/s in the 0.7 MPa group, and 955.6 ± 16.35 N and 6.67 m/s in the 0.8 MPa group. The periods of loss of righting reflex in 0.6-0.8 MPa groups were significantly higher than that in the Sham group. The mNSS score and BWC of the 0.8 MPa group remained higher 24 h after injury than other groups. Brain damage was indicated by increased APP expression in TBI rats. In conclusion, the newly developed CHI rat model was a highly controlled and reproducible graded TBI model, and provided a useful tool to investigate the underlying mechanism and therapeutic effects of TBI with various injury severities.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Modelos Animales de Enfermedad , Animales , Masculino , Ratas , Ratas Sprague-Dawley
10.
Nano Lett ; 18(3): 1620-1627, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29406729

RESUMEN

Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion-exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.

11.
Nat Commun ; 9(1): 186, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335589

RESUMEN

Dynamic control of nonlinear signals is critical for a wide variety of optoelectronic applications, such as signal processing for optical computing. However, controlling nonlinear optical signals with large modulation strengths and near-perfect contrast remains a challenging problem due to intrinsic second-order nonlinear coefficients via bulk or surface contributions. Here, via electrical control, we turn on and tune second-order nonlinear coefficients in semiconducting CdS nanobelts from zero to up to 151 pm V-1, a value higher than other intrinsic nonlinear coefficients in CdS. We also observe ultrahigh ON/OFF ratio of >104 and modulation strengths ~200% V-1 of the nonlinear signal. The unusual nonlinear behavior, including super-quadratic voltage and power dependence, is ascribed to the high-field domain, which can be further controlled by near-infrared optical excitation and electrical gating. The ability to electrically control nonlinear optical signals in nanostructures can enable optoelectronic devices such as optical transistors and modulators for on-chip integrated photonics.

12.
Nat Commun ; 8: 15033, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28401949

RESUMEN

Germanium telluride (GeTe) is both polar and metallic, an unusual combination of properties in any material system. The large concentration of free-carriers in GeTe precludes the coupling of external electric field with internal polarization, rendering it ineffective for conventional ferroelectric applications and polarization switching. Here we investigate alternate ways of coupling the polar domains in GeTe to external electrical stimuli through optical second harmonic generation polarimetry and in situ TEM electrical testing on single-crystalline GeTe nanowires. We show that anti-phase boundaries, created from current pulses (heat shocks), invert the polarization of selective domains resulting in reorganization of certain 71o domain boundaries into 109o boundaries. These boundaries subsequently interact and evolve with the partial dislocations, which migrate from domain to domain with the carrier-wind force (electrical current). This work suggests that current pulses and carrier-wind force could be external stimuli for domain engineering in ferroelectrics with significant current leakage.

13.
Nano Lett ; 17(3): 1839-1845, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28166635

RESUMEN

The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO2 nanorods increases the hydrogen production rate by ∼40% compared to similar Au-TiO2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.

14.
Opt Express ; 24(12): 13459-66, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27410362

RESUMEN

Here, we report experimental demonstration of dynamic control and enhancement of second harmonic generation and two photon excited photoluminescence in CdS nanoplates via an electromechanically reconfigurable Fabry-Perot (FP) microcavity. Microcavity coupled CdS nanoplates can be configured as a single or dual wavelength nonlinear light source by tuning the pump wavelength while the output intensities can be tuned by the on-chip control voltage. Our work realizes a reconfigurable device platform with insight toward advanced optical devices based on semiconductor nanoplates for next generation on-chip tunable light sources, sensors and optomechanical systems.

15.
Nano Lett ; 16(7): 4404-9, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27351823

RESUMEN

We demonstrate that optical second harmonic generation (SHG) can be utilized to determine the exact nature of nanotwins in noncentrosymmetric crystals, which is challenging to resolve via conventional transmission electron or scanned probe microscopies. Using single-crystalline nanotwinned CdTe nanobelts and nanowires as a model system, we show that SHG polarimetry can distinguish between upright (Cd-Te bonds) and inverted (Cd-Cd or Te-Te bonds) twin boundaries in the system. Inverted twin boundaries are generally not reported in nanowires due to the lack of techniques and complexity associated with the study of the nature of such defects. Precise characterization of the nature of defects in nanocrystals is required for deeper understanding of their growth and physical properties to enable their application in future devices.

16.
Sci Rep ; 6: 26607, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27210303

RESUMEN

We report the modulation of emission energy, exciton dynamics and lasing properties in a single buckled CdS nanoribbon (NR) by strain-engineering. Inspired by ordered structure fabrication on elastomeric polymer, we develop a new method to fabricate uniform buckled NRs supported on polydimethylsiloxane (PDMS). Wavy structure, of which compressive and tensile strain periodically varied along the CdS NR, leads to a position-dependent emission energy shift as large as 14 nm in photoluminescence (PL) mapping. Both micro-PL and micro-reflectance reveal the spectral characteristics of broad emission of buckled NR, which can be understood by the discrepancy of strain-induced energy shift of A- and B-exciton of CdS. Furthermore, the dynamics of excitons under tensile strain are also investigated; we find that the B-exciton have much shorter lifetime than that of redshifted A-exciton. In addition, we also present the lasing of buckled CdS NRs, in which the strain-dominated mode selection in multi-mode laser and negligible mode shifts in single-mode laser are clearly observed. Our results show that the strained NRs may serve as new functional optical elements for flexible light emitter or on-chip all-optical devices.


Asunto(s)
Compuestos de Cadmio/química , Luminiscencia , Nanotubos de Carbono/química , Sulfuros/química
17.
Nano Lett ; 16(3): 1631-6, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26854706

RESUMEN

Emerging two-dimensional semiconductor materials possess a giant second order nonlinear response due to excitonic effects while the monolayer thickness of such active materials limits their use in practical nonlinear devices. Here, we report 3300 times optomechanical enhancement of second harmonic generation from a MoS2 monolayer in a doubly resonant on-chip optical cavity. We achieve this by engineering the nonlinear light-matter interaction in a microelectro-mechanical system enabled optical frequency doubling device based on an electrostatically tunable Fabry-Perot microresonator. Our versatile optomechanical approach will pave the way for next generation efficient on-chip tunable light sources, sensors, and systems based on molecularly thin materials.

18.
Nano Lett ; 15(11): 7341-6, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26421441

RESUMEN

We demonstrate the utility of optical second harmonic generation (SHG) polarimetry to perform structural characterization of noncentrosymmetric, single-crystalline II-VI semiconducting nanowires, nanobelts, and nanoflakes. By analyzing anisotropic SHG polarimetric patterns, we distinguish between wurtzite and zincblende II-VI semiconducting crystal structures and determine their growth orientation. The crystallography of these nanostructures was then confirmed via transmission electron microscopy measurements performed on the same system. In addition, we show that some intrinsic material properties such as nonlinear coefficients and geometry-dependent optical in-coupling coefficients can also be determined from the SHG experiments in WZ nanobelts. The ability to perform SHG-based structural characterization and crystallographic study of II-VI semiconducting single-crystalline nanomaterials will be useful to correlate structure-property relationships of nanodevices on which transmission electron microscopy measurements cannot be typically performed.

19.
Chem Biol Drug Des ; 86(4): 715-22, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25682860

RESUMEN

As the most common primary malignant brain tumors, gliomas cause more years of life lost than do any other tumors. Recently, abnormalities of the eukaryotic initiation factors (EIFs) have been reported in gliomas. Yet the role of EIF3D, which encodes a subunit of EIF3 multiprotein complex, remains poorly understood. In this study, we found EIF3D expression was positively correlated with WHO grades of gliomas. Furthermore, we employ lentivirus-mediated RNA interference (RNAi) to examine the physiological role of EIF3D in glioma cells. Decreased EIF3D expression in U251 and U87MG glioma cells caused a delay in cell growth and a disruption in colony formation. In addition, EIF3D knockdown induced G0/G1 phase cell cycle arrest and apoptosis. Cells with suppressed expression of EIF3D had a lower capacity to migrate in the transwell assay. These results suggest that EIF3D plays an important role in glioma development and may serve as a potential therapeutic target for human glioma.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Factor 3 de Iniciación Eucariótica/genética , Glioma/genética , Glioma/patología , Adulto , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Lentivirus/genética , Masculino , Persona de Mediana Edad , Interferencia de ARN
20.
Int J Biochem Cell Biol ; 57: 63-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25450457

RESUMEN

Tumor specific immune regulatory cells play an important role in the pathogenesis of glioma. The mechanisms have not been fully understood yet. It is suggested that placenta growth factor (PlGF) is involved in the generation of immune regulatory cells. This study aims to investigate the role of glioma cell-derived PlGF in the generation of regulatory B cells (Breg). Glioma cells were isolated from surgically removed glioma tissue. Cytokines were measured by enzyme-linked immunosorbent assay, quantitative real time RT-PCR and Western blotting. Immune suppressor functions of Bregs were assessed by T cell proliferation assay. The results showed that glioma cells expressed PlGF, which was increased after a non-specific activation. Naïve B cells captured the PlGF to differentiate into transforming growth factor-ß positive Bregs. The Bregs were activated upon exposure to protein extracts of glioma tissue to suppress the CD8(+) T cell proliferation and the release of perforin and granzyme B. We conclude that glioma cell-released PlGF can induce Bregs to suppress CD8(+) T cell activities.


Asunto(s)
Linfocitos B Reguladores/inmunología , Glioma/inmunología , Proteínas de la Membrana/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Linfocitos B Reguladores/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Procesos de Crecimiento Celular/inmunología , Línea Celular Tumoral , Epítopos de Linfocito B/inmunología , Exosomas/inmunología , Exosomas/metabolismo , Femenino , Glioma/metabolismo , Glioma/patología , Humanos , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/metabolismo , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/inmunología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA