Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122605, 2023 Aug 05.
Article En | MEDLINE | ID: mdl-37004424

Insights into the solute-induced water structural transformations are essential to understand the role of water in biological and chemical reaction processes. Herein, the structural changes in water induced by amphiphilic organic molecules were investigated using concentration-dependent derivative Raman spectroscopy (DRS) combined with two-dimensional Raman correlation spectroscopy (2D Raman-COS). We shall restrict our attention in this work to binary mixtures of water with dimethyl sulfoxide (DMSO), acetone, and isopropanol (IPA), all of which have similar chemical structures. The spectral changes in O:H and OH stretching modes illustrate that the solute molecules induce an enhancement of the water structure in dilute solutions, where the enhanced degree of water structure is closely related to the size of the dipole moment of organic molecules. In addition, the transformations of solute-induced water-specific structures were evaluated by 2D Raman-COS, which shows that the strong hydrogen bond (H-bond) structure of water is more sensitive to organic molecules and induces a transition to the weak H-bond structure of water.

2.
Phys Chem Chem Phys ; 25(13): 9373-9381, 2023 Mar 29.
Article En | MEDLINE | ID: mdl-36920882

Carotenoids are a class of natural pigments that play a fundamental role in photosynthesis and optoelectronics. However, the complexity of their energy level structure and electronic states has prevented a clear interpretation of their photophysics and photochemistry. The mediating nonradiative decay of the bright S2 state to the dark S1 state of carotenoids involves a population of bridging intermediate state. Herein, time-dependent DFT was used to study the energy level and electronic excitation process of ß-carotene. A π-π* transition and π electron delocalization of electron excitation could be inferred based on the difference in the electron cloud distribution of the HOMO and LUMO orbitals. Through the electronic transition contribution in the UV-vis spectra and the electron density difference between the ground state and the excited state, the electronic energy level structure and possible dark state were analyzed. On this basis, the electronic excitation process of ß-carotene was theoretically studied by combining electron-hole analysis and transition density matrix (TDM). There was a charge transfer from the ß-ionone ring to the long-chain in the (S0) → (S2), (S0) → (S4) and (S0) → (S5).

3.
J Chem Phys ; 158(6): 064302, 2023 Feb 14.
Article En | MEDLINE | ID: mdl-36792499

Supercontinuum radiation has found numerous applications in diverse fields encompassing spectroscopy, pulse compression, and tunable laser sources. Anomalous enhanced stimulated Raman scattering (SRS) of cyclohexane-benzene mixtures was obtained in this study. SRS of the pure solvent, the multi-order Stokes of the strongest fundamental vibration modes, and energy transfer in intra-molecular modes were observed. SRS of the mixture revealed that the cross-pumping effect was generated between the C-H stretching (v2) mode of cyclohexane and the C=C ring skeleton (v1) mode of benzene, thereby producing the intermolecular secondary stimulated Raman emission and the appearance of two super-broadband radiations at 664.36-673.9 nm and 704.62-729.22 nm. The results suggest that the energy transfer of intermolecular vibrational modes, where the strongest vibrational mode excites other vibrational modes, is a simple approach for generating supercontinuum coherent radiation.

4.
J Phys Chem Lett ; 14(6): 1641-1649, 2023 Feb 16.
Article En | MEDLINE | ID: mdl-36752643

The hydrogen-bond (H-bond) dynamics and water structural transitions in aqueous ethylene glycol (EG) solution were investigated on the basis of concentration- and temperature-dependent two-dimensional Raman correlation spectroscopy (2D Raman-COS). At room temperature, EG-induced enhancement of the water structure when the EG/water molar ratio is less than 1:28 resulted from the hydrophobic effect around the methylene groups of EG. The decrease in the temperature caused an enhancement of the Raman peak at about 3200 cm-1, representing an increase in the orderliness of water molecules. Further analysis of the water-specific structures by 2D Raman-COS reveals that the strong H-bond structure preferentially responds to external perturbations and induces a weak H-bond structural transition in water. Finally, EG-induced water structural transitions were calculated by the density functional theory (DFT). Hopefully, 2D Raman-COS combined with DFT calculations would advance the study of solute-induced water structural transitions in water-organic chemistry.

5.
Genes (Basel) ; 13(12)2022 11 27.
Article En | MEDLINE | ID: mdl-36553491

Bacterial chemotaxis is the phenomenon in which bacteria migrate toward a more favorable niche in response to chemical cues in the environment. The methyl-accepting chemotaxis proteins (MCPs) are the principal sensory receptors of the bacterial chemotaxis system. Aerotaxis is a special form of chemotaxis in which oxygen serves as the signaling molecule; the process is dependent on the aerotaxis receptors (Aer) containing the Per-Arnt-Sim (PAS) domain. Over 40 MCPs are annotated on the genome of Vibrio cholerae; however, little is known about their functions. We investigated six MCPs containing the PAS domain in V. cholerae El Tor C6706, namely aer2, aer3, aer4, aer5, aer6, and aer7. Deletion analyses of each aer homolog gene indicated that these Aer receptors are involved in aerotaxis, chemotaxis, biofilm formation, and intestinal colonization. Swarming motility assay indicated that the aer2 gene was responsible for sensing the oxygen gradient independent of the other five homologs. When bile salts and mucin were used as chemoattractants, each Aer receptor influenced the chemotaxis differently. Biofilm formation was enhanced by overexpression of the aer6 and aer7 genes. Moreover, deletion of the aer2 gene resulted in better bacterial colonization of the mutant in adult mice; however, virulence gene expression was unaffected. These data suggest distinct roles for different Aer homologs in V. cholerae physiology.


Vibrio cholerae , Animals , Mice , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Chemoreceptor Cells/metabolism , Chemotaxis/genetics , Carrier Proteins/genetics , Oxygen/metabolism
6.
Biomolecules ; 12(11)2022 10 28.
Article En | MEDLINE | ID: mdl-36358932

Alginate hydrogel has received great attention in diabetic wound healing. However, the limited tunability of the ionic crosslinking method prevents the delicate management of physical properties in response to diverse wound conditions. We addressed this issue by using a microgel particle (fabricated by zinc ions and coordinated through the complex of carboxymethyl chitosan and aldehyde hyaluronic acid) as a novel crosslinker. Then the cation was introduced as a second crosslinker to create a double crosslinked network. The method leads to the precise regulation of the hydrogel characters, including the biodegradation rate and the controlled release rate of the drug. As a result, the optimized hydrogels facilitated the live-cell infiltration in vitro and boosted the tissue regeneration of diabetic wounds in vivo. The results indicated that the addition of the microgel as a new crosslinker created flexibility during the construction of the alginate hydrogel, adapting for diverse applications during diabetic-induced wound therapy.


Chitosan , Diabetes Mellitus , Microgels , Humans , Hydrogels/pharmacology , Alginates , Wound Healing , Chitosan/pharmacology , Diabetes Mellitus/drug therapy
7.
Dis Markers ; 2022: 1614208, 2022.
Article En | MEDLINE | ID: mdl-36246560

Objective: To analyze the differentially expressed genes (DEGs) in rats with endogenous acute respiratory distress syndrome (ARDS) lung injury and explore the pathogenesis and early diagnostic molecular markers using whole transcriptomic data. Methods: Twelve 8-week-old male Sprague Dawley rats were selected and randomly and equally divided into ARDS lung injury group and normal control group. RNA was extracted from the left lung tissues of both the groups and sequenced using the paired-end sequencing mode of the Illumina Hiseq sequencing platform. The DEGs of miRNA, cirRNA, lncRNA, and mRNA were screened using DESeq2 software, and the ceRNA regulatory network was constructed using Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using the mRNA DEGs. STRING and Cytoscape software were used to construct the protein interaction network and identify the 15 key genes, which were verified using quantitative real-time polymerase chain reaction (qRT-PCR). Results: Based on different screening conditions, and compared with the control group, the ARDS lung injury group showed 836 mRNA DEGs (386 upregulated and 450 downregulated), 110 lncRNA DEGs (53 upregulated and 57 downregulated), 19 circRNA DEGs (3 upregulated and 16 downregulated), and 6 miRNA DEGs (5 upregulated and 1 downregulated gene). GO showed that the DEGs of mRNA were mainly involved in biological processes, such as defense response to lipopolysaccharide and other organisms, leukocyte chemotaxis, neutrophil chemotaxis, and cytokine-mediated signaling. KEGG enrichment analysis showed that the DEGs played their biological roles mainly by participating in IL-17, TNF, and chemokine signaling pathways. The PPI analysis showed a total of 281 node proteins and 634 interaction edges. The top 15 key genes, which were screened, included Cxcl10, Mx1, Irf7, Isg15, Ifit3, Ifit2, Rsad2, Ifi47, Oasl, Dhx58, Usp18, Cmpk2, Herc6, Ifit1, and Gbp4. The ceRNA network analysis showed 69 nodes and 73 correlation pairs, where the key gene nodes were miR-21-3p, Camk2g, and Stx2. Conclusions: The chemotaxis, migration, and degranulation of inflammatory cells, cytokine immune response, autophagy, and apoptosis have significant biological functions in the occurrence and development of endogenous acute lung injury during ARDS. Thus, the camk2g/miR-21-3p/lncRNA/circRNA network, CXCL10/CXCR3, and IL-17 signaling pathways might provide novel insights and targets for further studying the lung injury mechanism and clinical treatment.


Cell-Free Nucleic Acids , Lung Injury , MicroRNAs , RNA, Long Noncoding , Respiratory Distress Syndrome , Animals , Male , Rats , Chemokines/genetics , Gene Expression Profiling , Gene Regulatory Networks , Interleukin-17/genetics , Lipopolysaccharides , MicroRNAs/genetics , Rats, Sprague-Dawley , Respiratory Distress Syndrome/genetics , RNA, Circular , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Signal Transduction , Transcriptome
8.
Immun Inflamm Dis ; 10(10): e691, 2022 10.
Article En | MEDLINE | ID: mdl-36169246

OBJECTIVE: To analyze the differential expression of autophagy-related genes of sepsis-induced acute respiratory distress syndrome (ARDS) as potential markers for early diagnosis. METHODS: Male Sprague-Dawley rats (aged 8 weeks) were selected and randomly divided into sepsis-induced ARDS group (n = 6) and a normal control group (n = 6). Lung tissue samples were collected for high-throughput sequencing using Illumina HiSeq sequencing platform in the paired-end sequencing mode. Differentially expressed genes (DEGs) were screened by DESeq. 2 software [|log2FC | ≥1 and p < .05] and autophagy-related genes were identified using Mouse Genome Informatics. Co-expressed autophagy-related DEGs from these two datasets were filtered by construction of a Venn diagram. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on these autophagy-related DEGs and a protein interaction network was constructed using STRING and Cytoscape software to identify hub genes, which were verified by real-time quantitative polymerase chain reaction (qRT-PCR). RESULTS: A total of 42 autophagy-related DEGs (26 upregulated genes and 16 downregulated genes) were identified. The GO and KEGG pathway analyses showed enrichment in 969 biological processes (BPs), three cellular components (CCs), eight molecular functions (MFs) and 27 signaling pathways. The protein interaction (PPI) network revealed 42 node proteins and 75 interacting edges, with an average node degree of 3.52, and an average local clustering coefficient of 0.509. Among the top 10 hub genes with the RNA-Seq, six hub genes (Stat3, Il10, Ifng, Hmox1, Hif1a, and Nod2) were validated by qRT-PCR (all p < .05). CONCLUSION: 42 potential autophagy-related genes associated with sepsis-induced ARDS lung injury were identified and six hub genes (Stat3, Il10, Ifng, Hmox1, Hif1a, and Nod2) may affect the development of ARDS by regulating autophagy. These results expanded our understanding of ARDS and might be useful in treatment of exogenous sepsis-induced ARDS.


Respiratory Distress Syndrome , Sepsis , Animals , Male , Rats , Autophagy/genetics , Gene Expression Profiling/methods , Interleukin-10/genetics , Rats, Sprague-Dawley , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/genetics , Sepsis/complications , Sepsis/genetics
9.
Antibiotics (Basel) ; 11(7)2022 Jun 29.
Article En | MEDLINE | ID: mdl-35884129

Colistin is regarded as an antibiotic of last resort against multidrug-resistant Gram-negative bacteria, including Klebsiella pneumoniae and Escherichia coli. Colistin resistance is acquired by microorganisms via chromosome-mediated mutations or plasmid-mediated mobile colistin resistance (mcr) gene, in which the transfer of mcr is the predominant factor underlying the spread of colistin resistance. However, the factors that are responsible for the spread of the mcr gene are still unclear. In this study, we observed that mcr-1 inhibited the transfer of the pHNSHP45 backbone in liquid mating. Similar inhibitory effect of mcr-1.6 and chromosomal mutant ΔmgrB suggested that colistin resistance, acquired from either plasmid or chromosomal mutation, hindered the transfer of colistin resistance-related plasmid in vitro. Dual plasmid system further proved that co-existing plasmid transfer was reduced too. However, this inhibitory effect was reversed in vivo. Some factors in the gut, including bile salt and anaerobic conditions, could increase the transfer frequency of the mcr-1-containing plasmid. Our results demonstrated the potential risk for the spread of colistin resistance in the intestine, provide a scientific basis against the transmission of colistin resistance threat.

10.
Polymers (Basel) ; 14(12)2022 Jun 17.
Article En | MEDLINE | ID: mdl-35746047

Heparin has shown benefits in severe acute pancreatitis (SAP) therapy, but the underlying mechanisms were unknown. Extracellular high-mobility group protein-1 (HMGB-1) has been regarded as a central mediator contributing to inflammation exacerbation and disease aggravation. We hypothesized heparin attenuated the disease by targeting HMGB-1-related pathways. In the present study, the possible therapeutic roles of heparin and its non-anticoagulant derivatives, 6-O-desulfulted heparin and N-acylated-heparin, were determined on mouse models induced by "Two-Hit" of L-arginine. The compounds exhibited potent efficiency by substantially decreasing the pancreatic necrosis, macrophage infiltration, and serum inflammatory cytokine (IL-6 and TNF-α) concentration. Moreover, they greatly reduced the rapidly increasing extracellular HMGB-1 levels in the L-arginine injured pancreases. As a result, multiple organ failure and mortality of the mice were inhibited. Furthermore, the drugs were incubated with the RAW264.7 cells activated with damaged pancreatic tissue of SAP mice in vitro. They were found to inhibit HMGB-1 transfer from the nucleus to the plasma, a critical step during HMGB-1 active secretion from macrophages. The results were carefully re-examined with a caerulein and LPS induced mouse model, and similar results were found. The paper demonstrated heparin alleviated SAP independent of the anti-coagulant functions. Therefore, non-anticoagulant heparin derivatives might become promising approaches to treat patients suffering from SAP.

11.
Life (Basel) ; 12(1)2022 Jan 16.
Article En | MEDLINE | ID: mdl-35054519

To develop a severe acute pancreatitis (SAP) model transited from mild symptoms, we investigated a "two-hit" strategy with L-arginine in mice. The mice were intraperitoneally injected with ice-cold L-arginine (4 g/kg) twice at an interval of 1 h on the first day and subjected to the repeated operation 72 h afterwards. The results showed the "two-hit" strategy resulted in the destructive damage and extensive necrosis of acinar cells in the pancreas compared with the "one-hit" model. Meanwhile, excessive levels of pro-inflammatory mediators, namely IL-6 and TNF-α, were released in the serum. Remarkably, additional deleterious effects on multiple organs were observed, including high intestinal permeability, kidney injury, and severe acute lung injury. Therefore, we confirmed that the SAP animal model triggered by a "two-hit" strategy with L-arginine was successfully established, providing a solid foundation for a deeper understanding of SAP initiation and therapy research to prevent worsening of the disease.

12.
Food Chem ; 373(Pt B): 131609, 2022 Mar 30.
Article En | MEDLINE | ID: mdl-34819245

To make full use of the porcine sources and develop better choice of novel GAGs as anti-coagulants, two fractions of GAGs from the porcine jejunum (A) and duodenum (C) have been separated & purified. The products were further sulfated to give B and D in order to test the influence of sulfate pattern on the bioactivity. The results showed that the relative molecular weight range of A was 3000-50,000 (Mw, g/mol), whereas C had an average molecular weight of 75,885 (Mw, g/mol). A was identified as a novel heparan sulfate through enzymatic hydrolysis analysis. C was a chondroitin like polysaccharide mainly composed of ß-d-GlcA-(1 â†’ 4) and ß-d-GalNAc-(1 â†’ 3). A possessed controllable anti-coagulant activity (7 IU/mg) in vitro. The activity of D almost achieved the same magnitude of A. This study demonstrated the anticoagulant potential of the polysaccharides, providing solid foundation for development of anti-coagulants from porcine intestine.


Chondroitin Sulfates , Glycosaminoglycans , Animals , Duodenum , Heparitin Sulfate , Jejunum , Swine
13.
Int J Biol Macromol ; 193(Pt B): 1043-1049, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34800517

Microgel affords a porous and swollen microstructure for the establishment of pulmonary delivery system with sustained released properties. Here, we report a microgel (with the diameter around 4 µm) prepared with a precipitation method, synthesized by coordinating Zn2+ to the Schiff base cross-linked carboxymethyl chitosan and glycol split hyaluronate. The microgel has shown well swollen and pH sensitive behaviors, high safety and biocompatibility in vitro. Besides, the biomaterial could escape from macrophage phagocytosis, a key factor contribute to quick drug clearance in the lung after co-incubated with RAW 264.7 cells. In consist with this, the bovine serum albumin loaded in the microgel showed sustained release behavior in 24 h in vitro; meanwhile, the drug had a retention time up to 36 h in the lung and followed by clearance in ICR mice through pulmonary administration. Thus, our microgel platform provides a promising candidate for pulmonary drug delivery systems with controlled release rate.


Chitosan/analogs & derivatives , Drug Carriers , Hyaluronic Acid , Lung/metabolism , Microgels/chemistry , Zinc , Animals , Chitosan/chemistry , Chitosan/pharmacokinetics , Chitosan/pharmacology , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacokinetics , Hyaluronic Acid/pharmacology , Mice , Mice, Inbred ICR , NIH 3T3 Cells , RAW 264.7 Cells , Zinc/chemistry , Zinc/pharmacokinetics , Zinc/pharmacology
14.
J Phys Chem Lett ; 12(26): 6119-6125, 2021 Jul 08.
Article En | MEDLINE | ID: mdl-34181421

Cascaded stimulated Raman scattering (SRS) of benzene, bromobenzene, chlorobenzene, ethylbenzene, and toluene was investigated by a pulsed Nd:YAG laser with 532 nm wavelength. The results showed that the third-order Stokes SRS of the ring skeleton vibration (CC at 3006 cm-1) accompanied by another higher-frequency Stokes SRS of the CH stretching vibration (at 3066 cm-1), which arose only when the third-order Stokes SRS of the ring skeleton was produced, can be attributed to the vibration energy transfer between vibration energy levels of CC and CH. The Stokes and anti-Stokes SRS rings, which originated from the intramolecular energy-transfer-enhanced four-wave mixing (FWM) processes, can be observed only in the forward direction along different angles apart from the pump beam direction. The phenomenon also existed in other derivatives of benzene. We propose the intramolecular energy-transfer-enhanced SRS for the first time, which can be used for a broadband Raman laser.

15.
Proc Math Phys Eng Sci ; 477(2245): 20200258, 2021 Jan.
Article En | MEDLINE | ID: mdl-33642922

In this paper, we derive fully implementable first-order time-stepping schemes for McKean-Vlasov stochastic differential equations, allowing for a drift term with super-linear growth in the state component. We propose Milstein schemes for a time-discretized interacting particle system associated with the McKean-Vlasov equation and prove strong convergence of order 1 and moment stability, taming the drift if only a one-sided Lipschitz condition holds. To derive our main results on strong convergence rates, we make use of calculus on the space of probability measures with finite second-order moments. In addition, numerical examples are presented which support our theoretical findings.

16.
RSC Adv ; 10(6): 3625, 2020 Jan 16.
Article En | MEDLINE | ID: mdl-35503424

[This corrects the article DOI: 10.1039/C5RA22237K.].

17.
Luminescence ; 30(8): 1290-6, 2015 Dec.
Article En | MEDLINE | ID: mdl-25847126

A new asymmetrical diarylethene containing a 1H-imidazo [4,5-f][1,10] phenanthroline unit was synthesized. The compound showed typical photochromism and functioned as a notable fluorescence switch upon alternating irradiation with ultraviolet (UV) and visible light. Its closed-ring isomer could be used as a selective 'naked-eye' colorimetric sensor for Cu(2+), accompanied by a notable color change from blue to colorless. Furthermore, the compound was found to be selective towards Ca(2+), Mg(2+), and Sr(2+) with significant fluorescence changes. On the basis of this characteristic, a logic circuit was constructed by utilizing both light and chemical stimuli as inputs and fluorescence intensity at 487 nm as output.


Ethylenes/chemistry , Fluorescent Dyes/chemistry , Phenanthrolines/chemistry , Fluorescence , Fluorescent Dyes/chemical synthesis , Molecular Structure , Spectrometry, Fluorescence
18.
PLoS One ; 6(4): e19512, 2011 Apr 29.
Article En | MEDLINE | ID: mdl-21559343

BACKGROUND: Wolbachia are obligate endosymbiotic bacteria that infect numerous species of arthropods and nematodes. Wolbachia can induce several reproductive phenotypes in their insect hosts including feminization, male-killing, parthenogenesis and cytoplasmic incompatibility (CI). CI is the most common phenotype and occurs when Wolbachia-infected males mate with uninfected females resulting in no or very low numbers of viable offspring. However, matings between males and females infected with the same strain of Wolbachia result in viable progeny. Despite substantial scientific effort, the molecular mechanisms underlying CI are currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression studies were undertaken in Drosophila melanogaster and D. simulans which display differential levels of CI using quantitative RT-PCR. We show that Hira expression is correlated with the induction of CI and occurs in a sex-specific manner. Hira expression is significantly lower in males which induce strong CI when compared to males inducing no CI or Wolbachia-uninfected males. A reduction in Hira expression is also observed in 1-day-old males that induce stronger CI compared to 5-day-old males that induce weak or no CI. In addition, Hira mutated D. melanogaster males mated to uninfected females result in significantly decreased hatch rates comparing with uninfected crosses. Interestingly, wMel-infected females may rescue the hatch rates. An obvious CI phenotype with chromatin bridges are observed in the early embryo resulting from Hira mutant fertilization, which strongly mimics the defects associated with CI. CONCLUSIONS/SIGNIFICANCE: Our results suggest Wolbachia-induced CI in Drosophila occurs due to a reduction in Hira expression in Wolbachia-infected males leading to detrimental effects on sperm fertility resulting in embryo lethality. These results may help determine the underlying mechanism of CI and provide further insight in to the important role Hira plays in the interaction of Wolbachia and its insect host.


Cell Cycle Proteins/physiology , Cytoplasm/metabolism , Drosophila Proteins/physiology , Histone Chaperones/physiology , Rickettsiaceae Infections/metabolism , Transcription Factors/physiology , Wolbachia/metabolism , Animals , Cell Cycle Proteins/biosynthesis , Crosses, Genetic , Cytoplasm/microbiology , Drosophila Proteins/biosynthesis , Drosophila melanogaster , Female , Fertility/genetics , Histone Chaperones/biosynthesis , Male , Microscopy, Fluorescence/methods , Mutation , Phenotype , Reproduction , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Transcription Factors/biosynthesis
...