Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 684
Filtrar
1.
Cell Signal ; : 111298, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39004325

RESUMEN

Circular RNAs (circRNAs) are covalently closed, single-stranded RNAs that play critical roles in various biological processes and diseases, including cancers. However, the functions and mechanisms of circRNAs in hepatocellular carcinoma (HCC) need further clarification. Here, we identified and confirmed that circATF6 is downregulated in HCC tissues and negatively associated with the overall survival of HCC patients. Ectopic overexpression of circATF6 inhibits malignant phenotypes of HCC cells in vitro and in vivo, while knockdown of circATF6 had opposite effects. Mechanistically, we found that circATF6 bound to calreticulin (CALR) protein and acted as a scaffold to enhance the interaction of CALR with calpain2 (CAPN2), which promoted the degradation of CALR by its enzymatic activity. Moreover, we found that circATF6 inhibited HCC cells by suppressing CALR-mediated wnt/ß-catenin signaling pathway. Taken together, our findings suggest that circATF6 is a potential prognostic biomarker and therapeutic target for HCC.

2.
BMC Infect Dis ; 24(1): 676, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971751

RESUMEN

BACKGROUND: Recent studies on the association between Helicobacter pylori (H. pylori) infection and obesity have reported conflicting results. Therefore, the purpose of our study was to investigate the association of obesity, abdominal obesity, and metabolic obesity phenotypes with H. pylori infection. METHODS: A cross-sectional study of 1568 participants aged 20 to 85 was conducted using the National Health and Nutrition Examination Survey (NHANES) cycle 1999-2000. Logistic regression models were employed to evaluate the association of general obesity as defined by body mass index (BMI), abdominal obesity as defined by waist circumference (WC) and waist-height ratio (WHtR), and metabolic obesity phenotypes with H. pylori seropositivity. Subgroup analyses stratified by age were conducted to explore age-specific differences in this association. RESULTS: After grouping individuals according to their WHtR, the prevalence rate of WHtR ≥ 0.5 in H. pylori-seropositive participants was significantly higher than that in H. pylori-seronegative participants (79.75 vs. 68.39, P < 0.001). The prevalence of H. pylori seropositivity in non-abdominal obesity and abdominal obesity defined by WHtR was 24.97% and 31.80%, respectively (P < 0.001). In the subgroup analysis, the adjusted association between abdominal obesity, as defined by the WHtR, and H. pylori seropositivity was significant in subjects aged < 50 years (OR = 2.23; 95% CI, 1.24-4.01; P = 0.01) but not in subjects aged ≥ 50 years (OR = 0.84; 95% CI, 0.35-1.99; P = 0.66). Subjects older than 50 years old had an OR (95% CI) for metabolically healthy obesity of 0.04 (0.01-0.35) compared with the control group. H. pylori seropositivity was consistently not associated with obesity as defined by BMI. CONCLUSIONS: Abdominal obesity, as defined by the WHtR, was associated with H. pylori infection in subjects aged ≤ 50 years.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Encuestas Nutricionales , Obesidad Abdominal , Obesidad , Humanos , Infecciones por Helicobacter/epidemiología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/complicaciones , Persona de Mediana Edad , Adulto , Masculino , Femenino , Estudios Transversales , Anciano , Obesidad/microbiología , Obesidad/epidemiología , Anciano de 80 o más Años , Adulto Joven , Obesidad Abdominal/epidemiología , Obesidad Abdominal/microbiología , Prevalencia , Fenotipo , Índice de Masa Corporal
3.
Int J Biol Macromol ; : 133705, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972646

RESUMEN

We identified a novel C-type lectin (CTL) from Macrobrachium nipponense, designated as Mn-clip-Lec. It consists of 1315 bp with an open reading frame of 1098 bp, encoding a polypeptide of 365 amino acids. Mn-clip-Lec contains 6 exons and 5 introns. Mn-clip-Lec possessed a CLIP domain at the N-terminal and two carbohydrate recognition domains at the C-terminal. Interaction between Mn-clip-Lec and MnLec was found by Yeast two-hybrid analysis. The expressions of Mn-clip-Lec, MnLec, prophenoloxidase (proPO)-activating system-associated genes (MnPPAF, MnPPAE, and MnPO), and antimicrobial peptide (AMPs) (MnALF and MnCRU) were up-regulated after the challenge with Staphylococcus aureus. RNA interference (RNAi)-mediated suppression of the Mn-clip-Lec and MnLec genes in S. aureus-challenged prawns reduced the transcripts of MnPPAF, MnPPAE, MnPO, MnALF and MnCRU. Knockdown of Mn-clip-Lec and MnLec resulted in decrease in PO activity in M. nipponense infected with S. aureus. The recombinant Mn-clip-Lec (rMn-clip-Lec) protein bound all tested bacteria and agglutinated S. aureus. A sugar-binding assay revealed that rMn-clip-Lec could bind to LPS or PGN. rMn-clip-Lec accelerated the clearance of S. aureus in vivo. Our findings suggest that Mn-clip-Lec and its interacting MnLec play important roles in the induction of the proPO system and AMPs expression in M. nipponense during bacterial infection.

4.
J Econ Entomol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38894631

RESUMEN

Molting is a key solution to growth restriction in insects. The periodic synthesis and degradation of chitin, one of the major components of the insect epidermis, is necessary for insect growth. MicroRNA (miRNA) have been implicated in molting regulation, yet their involvement in the interplay interaction between the chitin synthesis pathway and 20-hydroxyecdysone signaling remains poorly understood. In this study, soluble trehalase (Tre1) and phosphoacetylglucosamine mutase (PAGM) were identified as targets of conserved miR-8-3p and miR-2a-3, respectively. The expression profiles of miR-8-3p-SfTre1 and miR-2a-3-SfPAGM exhibited an opposite pattern during the different developmental stages, indicating a negative regulatory relationship between them. This relationship was confirmed by an in vitro dual-luciferase reporter system. Overexpression of miR-8-3p and miR-2a-3 by injection of mimics inhibited the expression of their respective target genes and increased mortality, leading to death in the pre-molting, and molting death phenomena. They also caused a decrease in chitin content and expression levels of key genes in the chitin synthesis pathway (SfTre1, SfTre2, SfHK, SfG6PI, SfGFAT, SfGNA, SfPAGM, SfUAP, SfCHS1, SfCHS1a, and SfCHS1b). Conversely, the injection of miRNA inhibitors resulted in the upregulation of the expression levels of these genes. Following 20E treatment, the expression levels of miR-8-3p and miR-2a-3 decreased significantly, while their corresponding target genes increased significantly. These results indicate that miR-8-3p and miR-2a-3 play a regulatory role in the molting of Sogatella furcifera by targeting SfTre1 and SfPAGM, respectively. These findings provide new potential targets for the development of subsequent new control strategies.

5.
Br J Haematol ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877874

RESUMEN

MLL-rearranged (MLL-r) leukaemia is observed in approximately 10% of acute myeloid leukaemia (AML) and is associated with a relatively poor prognosis, highlighting the need for new treatment regimens. MLL fusion proteins produced by MLL rearrangements recruit KDM4C to mediate epigenetic reprogramming, which is required for the maintenance of MLL-r leukaemia. In this study, we used a combinatorial drug screen to selectively identify synergistic treatment partners for the KDM4C inhibitor SD70. The results showed that the drug combination of SD70 and MI-503, a potent menin-MLL inhibitor, induced synergistically enhanced apoptosis in MLL::AF9 leukaemia cells without affecting normal CD34+ cells. In vivo treatment with SD70 and MI-503 significantly prolonged survival in AML xenograft models. Differential gene expression analysis by RNA-seq following combined pharmacological inhibition of SD70 and MI-503 revealed changes in numerous genes, with MYC target genes being the most significantly downregulated. Taken together, these data provide preclinical evidence that the combination of SD70 and MI-503 is a potential dual-targeted therapy for MLL::AF9 AML.

6.
Biochem Pharmacol ; 226: 116337, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844265

RESUMEN

Spinal cystic echinococcosis (CE) is a rare but malignant zoonosis that can cause disability or even death in more than half of patients. Due to the complex pathological features, it is not curable by conventional drugs and surgery, so new therapeutic targets urgently need to be discovered. In this study, we clarify the occurrence of the phenomenon of spinal encapsulation angiogenesis and explore its underlying molecular mechanisms. A co-culture system was established by protoscoleces (PSCs) with human umbilical vein endothelial cells (HUVECs) which showed a high expression level of Nrf2. A short hairpin RNA (shRNA) and Sulforaphane (SFN) affecting the expression of Nrf2 were used to treat HUVECs. The results showed that Nrf2 could promote the tube formation of HUVECs. Nrf2 also exerts a protective effect against HUVECs, which is achieved by promoting NQO1 expression to stabilize ROS levels. Furthermore, autophagy activation significantly promotes angiogenesis in the spinal echinococcosis model (SEM) as a result of Nrf2 regulation of oxidative stress. These results suggest that the ROS/Nrf2/autophagy axis can induce angiogenesis and may be a potential target for the treatment of spinal cystic echinococcosis.

7.
Fish Shellfish Immunol ; : 109721, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917950

RESUMEN

C-type lectins (CTLs) are an important class of pattern recognition receptors (PRRs) that exhibit structural and functional diversity in invertebrates. Repetitive DNA sequences are ubiquitous in eukaryotic genomes, representing distinct modes of genome evolution and promoting new gene generation. Our study revealed a new CTL that is composed of two long tandem repeats, abundant threonine, and one carbohydrate recognition domain (CRD) in Exopalaemon carinicauda and has been designated EcTR-CTL. The full-length cDNA of EcTR-CTL was 1242 bp long and had an open reading frame (ORF) of 999 bp that encoded a protein of 332 amino acids. The genome structure of EcTR-CTL contains 4 exons and 3 introns. The length of each repeat unit in EcTR-CTL was 198 bp, which is different from the short tandem repeats reported previously in prawns and crayfish. EcTR-CTL was abundantly expressed in the intestine and hemocytes. After Vibrio parahaemolyticus and white spot syndrome virus (WSSV) challenge, the expression level of EcTR-CTL in the intestine was upregulated. Knockdown of EcTR-CTL down-regulated the expression of anti-lipopolysaccharide factor, crustin, and lysozyme during Vibrio infection. The recombinant CRD of EcTR-CTL (rCRD) could bind to bacteria, lipopolysaccharides, and peptidoglycans. Additionally, rCRD can directly bind to WSSV. These findings indicate that 1) CTLs with tandem repeats may be ubiquitous in crustaceans, 2) EcTR-CTL may act as a PRR to participate in the innate immune defense against bacteria via nonself-recognition and antimicrobial peptide regulation, and 3) EcTR-CTL may play a positive or negative role in the process of WSSV infection by capturing virions.

8.
Fish Shellfish Immunol ; 151: 109735, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945414

RESUMEN

Antimicrobial peptide (AMP) is an important component of crustaceans' innate immune system. In this study, a short neuropeptide F (sNPF) gene (Pc-sNPF) and a Forkhead box O (FOXO) gene (PcFOXO) from Procambarus clarkii were identified. Analysis findings showed that the expression level of AMP genes differed between male and female P. clarkii. Furthermore, Pc-sNPF and PcFOXO were related to the sex dimorphism of AMP. Knockdown of Pc-sNPF in the eyestalk significantly upregulated the expression of PcFOXO and two anti-lipopolysaccharide factors (PcALF4 and PcALFL) in the intestine of P. clarkii. The expression of PcFOXO in the intestine of female P. clarkii was higher than in that of males. Results from RNA interference revealed that PcFOXO positively regulated the expression of PcALF4 and PcALFL in the intestine of male and female P. clarkii. In summary, our study showed that differences in Pc-sNPF expression in eyestalk of male and female P. clarkii leading to sex dimorphism of AMP expression in the intestine are mediated by the sNPF-FOXO-AMP signal pathway called the eyestalk-intestine axis.

9.
Stem Cell Res ; 78: 103450, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38820865

RESUMEN

Parkinson's disease is a common neurodegenerative disorder. Here we present a human induced pluripotent stem cells (iPSCs) derived from peripheral blood mononuclear cells (PBMCs) of a 79-year-old female patient diagnosed with sporadic Parkinson's disease using the sendai virus. Generated iPSCs maintain normal karyotype, exhibit pluripotent stem cell markers, and possess differentiation potential. The iPSCs allows for differentiation into various cell subtypes, providing conditions for the research of the pathogenesis and drug development of Parkinson's disease.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Humanos , Femenino , Células Madre Pluripotentes Inducidas/metabolismo , Anciano , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/diagnóstico , Leucocitos Mononucleares/citología , Línea Celular , Cariotipo
10.
Diabetes Care ; 47(7): 1140-1142, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691834

RESUMEN

OBJECTIVE: Metformin, insulin, and insulin secretagogues do not alter HbA1c levels in glucokinase maturity-onset diabetes of the young (GCK-MODY). However, the efficacy of the new hypoglycemic drugs on GCK-MODY remains unclear. RESEARCH DESIGN AND METHODS: We describe a case of GCK-MODY with unchanged blood glucose under different therapies during an 8 years' follow-up. His HbA1c and biochemical indices under different hypoglycemic treatments were recorded. RESULTS: Oral glucose-lowering drugs, including thiazolidinediones, dipeptidyl peptidase 4 inhibitor, α-glucosidase inhibitor, and sodium-glucose cotransporter 2 inhibitor that had not been evaluated previously, did not improve the HbA1c level in this patient. However, the glucokinase activator dorzagliatin effectively and safely lowered his HbA1c level. CONCLUSIONS: Dorzagliatin was effective and safe in this patient with GCK-MODY, providing potential application prospects for precise treatment of GCK-MODY with dorzagliatin.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Humanos , Masculino , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Hemoglobina Glucada/metabolismo , Adulto , Glucoquinasa/metabolismo , Glicósidos
11.
Int J Biol Macromol ; 269(Pt 2): 132138, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718998

RESUMEN

Addressing marine oil spills and industrial water pollution necessitates the development of eco-efficient oil-absorbing materials. With increasing concern for the environment, there is a consensus to decrease the use of petroleum-based polymers. Herein, lightweight poly(lactic acid) (PLA) blend foams with varying thermoplastic polyurethane (TPU) content were fabricated via a solvent-free, eco-friendly supercritical carbon dioxide (scCO2) extrusion foaming technology. The incorporation of TPU significantly enhanced the crystallization rate of PLA, with the semi-crystallization time of PT30 and PT50 blends at 105 °C exhibiting a reduction of 77.2 % and 47.9 %, respectively, compared to neat PLA. The resulting foams exhibited an open-cell structure with excellent selective oil adsorption capabilities. Notably, the PT30 foam achieved a remarkable maximum expansion ratio of 36.0, while the PT50 foam attained the highest open-cell content of 96.2 %. The PT50 foam demonstrated an outstanding adsorption capacity, spanning from 4.7 to 18.8 g/g for diverse oils and solvents, with rapid adsorption kinetics, reaching 94.9 % of the equilibrium adsorption capacity for CCl4 within just 1 min. Furthermore, the PT50 foam retained 95.2 % of its adsorption capacity for CCl4 over 10 adsorption-desorption cycles. This study presents a scalable and sustainable approach for large-scale production of high-performance, bio-based foams, facilitating efficient oil-water separation.


Asunto(s)
Dióxido de Carbono , Poliésteres , Poliésteres/química , Adsorción , Dióxido de Carbono/química , Aceites/química , Poliuretanos/química , Cinética
12.
Chin Med J (Engl) ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802283

RESUMEN

ABSTRACT: Acute kidney injury (AKI) is a common clinically critical syndrome in hospitalized patients with high morbidity and mortality. At present, the mechanism of AKI has not been fully elucidated, and no therapeutic drugs exist. As known, glycolytic product lactate is a key metabolite in physiological and pathological processes. The kidney is an important gluconeogenic organ, where lactate is the primary substrate of renal gluconeogenesis in physiological conditions. During AKI, altered glycolysis and gluconeogenesis in kidneys significantly disturb the lactate metabolic balance, which exert impacts on the severity and prognosis of AKI. Additionally, lactate-derived posttranslational modification, namely lactylation, is novel to AKI as it could regulate gene transcription of metabolic enzymes involved in glycolysis or Warburg effect. Protein lactylation widely exists in human tissues and may severely affect non-histone functions. Moreover, the strategies of intervening lactate metabolic pathways are expected to bring a new dawn for the treatment of AKI. This review focused on renal lactate metabolism, especially in proximal renal tubules after AKI, and updated recent advances of lactylation modification, which may help to explore potential therapeutic targets against AKI.

13.
Int J Biol Sci ; 20(6): 2310-2322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617540

RESUMEN

Wnt/ß-catenin signaling plays a pivotal role in the pathogenesis of chronic kidney diseases (CKD), which is associated with macrophage activation and polarization. However, the relative contribution of macrophage-derived Wnts in the evolution of CKD is poorly understood. Here we demonstrate a critical role of Wnts secreted by macrophages in regulating renal inflammation and fibrosis after various injuries. In mouse model of kidney fibrosis induced by unilateral ureteral obstruction (UUO), macrophages were activated and polarized to M1 and M2 subtypes, which coincided with the activation of Wnt/ß-catenin signaling. In vitro, multiple Wnts were induced in primary cultured bone marrow-derived macrophages (BMDMs) after polarization. Conversely, Wnt proteins also stimulated the activation and polarization of BMDMs to M1 and M2 subtype. Blockade of Wnt secretion from macrophages in mice with myeloid-specific ablation of Wntless (Wls), a cargo receptor that is obligatory for Wnt trafficking and secretion, blunted macrophage infiltration and activation and inhibited the expression of inflammatory cytokines. Inhibition of Wnt secretion by macrophages also abolished ß-catenin activation in tubular epithelium, repressed myofibroblast activation and reduced kidney fibrosis after either obstructive or ischemic injury. Furthermore, conditioned medium from Wls-deficient BMDMs exhibited less potency to stimulate fibroblast proliferation and activation, compared to the controls. These results underscore an indispensable role of macrophage-derived Wnts in promoting renal inflammation, fibroblasts activation and kidney fibrosis.


Asunto(s)
Insuficiencia Renal Crónica , beta Catenina , Animales , Ratones , Macrófagos , Miofibroblastos , Inflamación , Riñón
14.
J Colloid Interface Sci ; 668: 88-97, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38669999

RESUMEN

Nanotheranostic platforms, which can respond to tumor microenvironments (TME, such as low pH and hypoxia), are immensely appealing for photodynamic therapy (PDT). However, hypoxia in solid tumors harms the treatment outcome of PDT which depends on oxygen molecules to generate cytotoxic singlet oxygen (1O2). Herein, we report the design of TME-responsive smart nanotheranostic platform (DOX/ZnO2@Zr-Ce6/Pt/PEG) which can generate endogenously hydrogen peroxide (H2O2) and oxygen (O2) to alleviate hypoxia for improving photodynamic-chemo combination therapy of tumors. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite was prepared by the synthesis of ZnO2 nanoparticles, in-situ assembly of Zr-Ce6 as typical metal-organic framework (MOF) on ZnO2 surface, in-situ reduction of Pt nanozymes, amphiphilic lipids surface coating and then doxorubicin (DOX) loading. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite exhibits average sizes of ∼78 nm and possesses a good loading capacity (48.8 %) for DOX. When DOX/ZnO2@Zr-Ce6/Pt/PEG dispersions are intratumorally injected into mice, the weak acidic TEM induces the decomposition of ZnO2 core to generate endogenously H2O2, then Pt nanozymes catalyze H2O2 to produce O2 for alleviating tumor hypoxia. Upon laser (630 nm) irradiation, the Zr-Ce6 component in DOX/ZnO2@Zr-Ce6/Pt/PEG can produce cytotoxic 1O2, and 1O2 generation rate can be enhanced by 2.94 times due to the cascaded generation of endogenous H2O2/O2. Furthermore, the generated O2 can suppress the expression of hypoxia-inducible factor α, and further enable tumor cells to become more sensitive to chemotherapy, thereby leading to an increased effectiveness of chemotherapy treatment. The photodynamic-chemo combination therapy from DOX/ZnO2@Zr-Ce6/Pt/PEG nanoplatform exhibits remarkable tumor growth inhibition compared to chemotherapy or PDT. Thus, the present study is a good demonstration of a TME-responsive nanoplatform in a multimodal approach for cancer therapy.


Asunto(s)
Doxorrubicina , Peróxido de Hidrógeno , Oxígeno , Fotoquimioterapia , Nanomedicina Teranóstica , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Animales , Ratones , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Oxígeno/química , Oxígeno/metabolismo , Humanos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Tamaño de la Partícula , Propiedades de Superficie , Ensayos de Selección de Medicamentos Antitumorales , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Peróxidos/química , Peróxidos/farmacología , Nanopartículas/química , Ratones Endogámicos BALB C , Zinc/química , Zinc/farmacología , Microambiente Tumoral/efectos de los fármacos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administración & dosificación
15.
Nat Commun ; 15(1): 2989, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582902

RESUMEN

Despite the identification of driver mutations leading to the initiation of myeloproliferative neoplasms (MPNs), the molecular pathogenesis of MPNs remains incompletely understood. Here, we demonstrate that growth arrest and DNA damage inducible gamma (GADD45g) is expressed at significantly lower levels in patients with MPNs, and JAK2V617F mutation and histone deacetylation contribute to its reduced expression. Downregulation of GADD45g plays a tumor-promoting role in human MPN cells. Gadd45g insufficiency in the murine hematopoietic system alone leads to significantly enhanced growth and self-renewal capacity of myeloid-biased hematopoietic stem cells, and the development of phenotypes resembling MPNs. Mechanistically, the pathogenic role of GADD45g insufficiency is mediated through a cascade of activations of RAC2, PAK1 and PI3K-AKT signaling pathways. These data characterize GADD45g deficiency as a novel pathogenic factor in MPNs.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Animales , Humanos , Ratones , Janus Quinasa 2/metabolismo , Mutación , Trastornos Mieloproliferativos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética
16.
World J Gastroenterol ; 30(15): 2143-2154, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38681990

RESUMEN

BACKGROUND: Liver fibrosis is a compensatory response during the tissue repair process in chronic liver injury, and finally leads to liver cirrhosis or even hepatocellular carcinoma. The pathogenesis of hepatic fibrosis is associated with the progressive accumulation of activated hepatic stellate cells (HSCs), which can transdifferentiate into myofibroblasts to produce an excess of the extracellular matrix (ECM). Myofibroblasts are the main source of the excessive ECM responsible for hepatic fibrosis. Therefore, activated hepatic stellate cells (aHSCs), the principal ECM producing cells in the injured liver, are a promising therapeutic target for the treatment of hepatic fibrosis. AIM: To explore the effect of taurine on aHSC proliferation and the mechanisms involved. METHODS: Human HSCs (LX-2) were randomly divided into five groups: Normal control group, platelet-derived growth factor-BB (PDGF-BB) (20 ng/mL) treated group, and low, medium, and high dosage of taurine (10 mmol/L, 50 mmol/L, and 100 mmol/L, respectively) with PDGF-BB (20 ng/mL) treated group. Cell Counting Kit-8 method was performed to evaluate the effect of taurine on the viability of aHSCs. Enzyme-linked immunosorbent assay was used to estimate the effect of taurine on the levels of reactive oxygen species (ROS), malondialdehyde, glutathione, and iron concentration. Transmission electron microscopy was applied to observe the effect of taurine on the autophagosomes and ferroptosis features in aHSCs. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to detect the effect of taurine on the expression of α-SMA, Collagen I, Fibronectin 1, LC3B, ATG5, Beclin 1, PTGS2, SLC7A11, and p62. RESULTS: Taurine promoted the death of aHSCs and reduced the deposition of the ECM. Treatment with taurine could alleviate autophagy in HSCs to inhibit their activation, by decreasing autophagosome formation, downregulating LC3B and Beclin 1 protein expression, and upregulating p62 protein expression. Meanwhile, treatment with taurine triggered ferroptosis and ferritinophagy to eliminate aHSCs characterized by iron overload, lipid ROS accumulation, glutathione depletion, and lipid peroxidation. Furthermore, bioinformatics analysis demonstrated that taurine had a direct targeting effect on nuclear receptor coactivator 4, exhibiting the best average binding affinity of -20.99 kcal/mol. CONCLUSION: Taurine exerts therapeutic effects on liver fibrosis via mechanisms that involve inhibition of autophagy and trigger of ferroptosis and ferritinophagy in HSCs to eliminate aHSCs.


Asunto(s)
Autofagia , Proliferación Celular , Ferroptosis , Células Estrelladas Hepáticas , Cirrosis Hepática , Especies Reactivas de Oxígeno , Taurina , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Autofagia/efectos de los fármacos , Taurina/farmacología , Ferroptosis/efectos de los fármacos , Cirrosis Hepática/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Becaplermina/farmacología , Becaplermina/metabolismo , Línea Celular , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Supervivencia Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
17.
Plant Sci ; 343: 112057, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460553

RESUMEN

The eukaryotic AGC protein kinase subfamily (protein kinase A/ protein kinase G/ protein kinase C-family) is involved in regulating numerous biological processes across kingdoms, including growth and development, and apoptosis. PDK1(3-phosphoinositide-dependent protein kinase 1) is a conserved serine/threonine kinase in eukaryotes, which is both a member of AGC kinase and a major regulator of many other downstream AGC protein kinase family members. Although extensively investigated in model plant Arabidopsis, detailed reports for tobacco PDK1s have been limited. To better understand the functions of PDK1s in tobacco, CRISPR/CAS9 transgenic lines were generated in tetraploid N. tabacum, cv. Samsun (NN) with 5-7 of the 8 copies of 4 homologous PDK1 genes in tobacco genome (NtPDK1a/1b/1c/1d homologs) simultaneously knocked out. Numerous developmental defects were observed in these NtPDK1a/1b/1c/1d CRISPR/CAS9 lines, including cotyledon fusion leaf shrinkage, uneven distribution of leaf veins, convex veins, root growth retardation, and reduced fertility, all of which reminiscence of impaired polar auxin transport. The severity of these defects was correlated with the number of knocked out alleles of NtPDK1a/1b/1c/1d. Consistent with the observation in Arabidopsis, it was found that the polar auxin transport, and not auxin biosynthesis, was significantly compromised in these knockout lines compared with the wild type tobacco plants. The fact that no homozygous plant with all 8 NtPDK1a/1b/1c/1d alleles being knocked out suggested that knocking out 8 alleles of NtPDK1a/1b/1c/1d could be lethal. In conclusion, our results indicated that NtPDK1s are versatile AGC kinases that participate in regulation of tobacco growth and development via modulating polar auxin transport. Our results also indicated that CRISPR/CAS9 technology is a powerful tool in resolving gene redundancy in polyploidy plants.


Asunto(s)
Arabidopsis , Nicotiana , Nicotiana/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Sistemas CRISPR-Cas , Proteínas Quinasas/genética , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
Lancet Reg Health West Pac ; 45: 101032, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38440130

RESUMEN

Background: Dry eye disease has a high prevalence and exerts a significant negative effect on quality of life. In China, there are currently no available nasal sprays to promote natural tear production in patients with dry eye disease. We therefore evaluated the efficacy and safety of OC-01 (varenicline solution) nasal spray versus vehicle in Chinese patients with dry eye disease. Methods: This was a randomized, multicenter, double-masked, vehicle-controlled, phase 3 clinical trial conducted at ophthalmology departments in 20 hospitals across China (NCT05378945). Eligible patients had a diagnosis of dry eye disease based on patient symptoms, Eye Dryness Score (EDS), Schirmer's Test (with topical anesthesia) Score (STS), and corneal fluorescein staining (CFS) score. Participants were randomly assigned 1:1 using an Interactive Web Response System (IWRS) to receive OC-01 0.6 mg/mL twice daily (BID) or vehicle nasal spray. Participants, investigators, and sponsor were all masked to treatment assignment. The primary endpoint was the percentage of subjects in the intention-to-treat population achieving ≥10 mm improvement in STS from baseline at week 4. Findings: In total, 340 patients were randomized from 21 July 2022 to 04 April 2023, 78.8% were female. Patients in the OC-01 group (n = 176) had significantly higher achievement of ≥10 mm improvement in STS (35.8% [n = 63] versus 17.7% [n = 29], stratified odds ratio: 2.67, 95% CI: 1.570-4.533, p = 0.0002) and a significantly greater increase from baseline STS (least-squares mean difference [SE]: 3.87 [0.794], p < 0.0001) at week 4 versus the vehicle group (n = 164). In addition, OC-01 led to a numerically greater reduction in mean EDS from baseline at week 4 compared to the vehicle group (LS mean [SE] difference: -1.3 [2.20]; 95% CI: -5.64 to 2.99, p = 0.5467). The most common adverse event was mild, transient sneezing (78% of OC-01 administrations). No serious adverse events related to nasal administration occurred. Interpretation: OC-01 (varenicline solution) nasal spray BID has clinically meaningful efficacy for reducing the signs (as measured by STS) and may improve the symptoms (as measured by EDS) of dry eye disease, with an excellent safety and tolerability profile, in the Chinese population. Funding: Jixing Pharmaceutical Co. Ltd.

19.
Stem Cell Res ; 77: 103400, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547667

RESUMEN

KCNH2 (Potassium Voltage-Gated Channel Subfamily H Member) encodes a voltage-activated potassium channel role as rapidly activating-delayed rectifier potassium channel that plays an essential role in the final repolarization of the ventricular action potential. Mutations in this gene can cause long QT syndrome and short QT syndrome. Transcript variants encoding distinct isoforms were also identified. In this study, we generated induced pluripotent stem cells (iPSC) from a healthy individual by electroporation of peripheral blood mononuclear cells and generated a KCNH2 heterozygous knockout human iPSC line via CRISPR/Cas9 gene editing. The resulting iPSCs had a normal karyotype, were free of genomically integrated epitomal plasmids, expressed pluripotency markers, and maintained trilineage differentiation potential.


Asunto(s)
Canal de Potasio ERG1 , Heterocigoto , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/patología , Línea Celular , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Diferenciación Celular , Edición Génica , Arritmias Cardíacas
20.
Diabetes Metab Res Rev ; 40(4): e3788, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38546151

RESUMEN

AIMS: Alström syndrome (AS) is a rare recessive disorder characterised by diabetes, obesity, insulin resistance (IR), and visual and hearing impairments. Mutations in the ALMS1 gene have been identified as the causative agents of AS. This study aimed to explore the relationship between rare ALMS1 variants and clinical features in Chinese patients with early-onset type 2 diabetes (age at diagnosis ≤40 years; EOD). MATERIALS AND METHODS: ALMS1 gene sequencing was performed in 611 Chinese individuals with EOD, 36 with postprandial hyperinsulinemia, and 47 with pre-diabetes and fasting IR. In-silico prediction algorithm and the American College of Medical Genetics Guidelines (ACMG) were used to evaluate the deleteriousness and pathogenicity of the variants. RESULTS: Sixty-two rare ALMS1 variants (frequency <0.005) were identified in 82 patients with EOD. Nineteen variants were predicted to be deleterious (pD). Patients with EOD carrying pD variants had higher fasting C-peptide, postprandial C-peptide, and HOMA2-IR levels than those without variants. The frequency of ALMS1 pD variants in the subgroup with more insulin-resistant EOD was higher than that in other EOD subgroups. Two patients with EOD, obesity, and IR who carried one heterozygous pathogenic/likely pathogenic rare variant of ALMS1 according to ACMG were identified. Moreover, rare heterozygous pD variants of ALMS1 were found in participants from cohorts of postprandial hyperinsulinemia as well as in pre-diabetes with fasting IR. CONCLUSIONS: ALMS1 rare pD variants are enriched in the populations with significant IR, which is a major hallmark of diabetes pathogenesis. Accordingly, our exploratory study provides insights and hypotheses for further studies of gene function.


Asunto(s)
Síndrome de Alstrom , Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Resistencia a la Insulina , Estado Prediabético , Humanos , Adulto , Resistencia a la Insulina/genética , Diabetes Mellitus Tipo 2/genética , Péptido C , Proteínas de Ciclo Celular/genética , Síndrome de Alstrom/genética , Obesidad , Mutación , China/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...