Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38015072

RESUMEN

Despite the development of many functional fabrics, they are unable to meet practical needs due to their monolithic functions and low durability. Therefore, a multifunctional waterborne polyurethane nanodroplet containing disulfide bonds (WSPU) was synthesized using a simple and environmentally friendly approach. The functional WSPU nanodroplet coating endowed fabrics with a variety of properties, including exceptional hydrophobicity, antibacterial properties, self-healing at room temperature, directional transport, etc. The functionalized fabric demonstrated durable mechanical and chemical stabilities due to the combined effects of disulfide bond reconstruction and hydrophobic chain migration. It exhibited the ability to regain its hydrophobic properties at room temperature after 50 friction cycles were performed without requiring external stimulation. Furthermore, the fabric maintained a water contact angle above 140°, even after being subjected to washing, boiling, and immersion in acid and alkali solutions. In addition, as a result of the fabric's Janus-like wettability, it performed various functions in accordance with varying weather conditions, in terms of wearing comfort and breathability. In hot weather or during exercise, the Janus fabric with the hydrophilic side facing outward enhances the process of sweat-directed perspiration, resulting in a notable cooling effect. On rainy days, the Janus fabric, when positioned with the hydrophobic side facing outward, exhibited excellent waterproof performance. This study presents an opportunity to explore the development of multifunctional fabrics through the combined effects of several functions.

2.
Macromol Biosci ; 23(10): e2300099, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37263296

RESUMEN

During the COVID-19 (Corona Virus Disease 2019) pandemic, traditional medical goggles are not only easy to attach bacteria and viruses in long-term exposure, but easy to fogged up, which increases the risk of infection and affects productivity. Bacterial adhesion and fog can be significantly inhibited through the hydrogel coatings, owing to super hydrophilic properties. On the one hand, hydrogel coatings are easy to absorb water and swell in wet environment, resulting in reduced mechanical properties, even peeling off. On the other hand, the hydrogel coatings don't have intrinsic antibacterial properties, which still poses a potential risk of bacterial transmission. Herein, an anti-swelling and antibacterial hydrogel coating is synthesized by 2-hydroxyethyl methacrylate (HEMA), acrylamide (AM), dimethylaminoethyl acrylate bromoethane (IL-Br), and poly(sodium-p-styrenesulfonate) (PSS). Due to the self-driven entropy reduction effect of polycation and polyanion, an ion cross-linking network is formed, which endows the hydrogel coating with excellent antiswelling performance. Moreover, because of the synergistic effect of highly hydrated surfaces and the active bactericidal effect from quaternary ammonium cations, the hydrogel coating exhibits outstanding antifouling performances. This work develops a facile strategy to fabricate anti-swelling, antifouling, and antifogging hydrogel coatings for the protection of medical goggles, and also for biomedical and marine antifouling fields.


Asunto(s)
COVID-19 , Dispositivos de Protección de los Ojos , Humanos , Adhesión Bacteriana , Antibacterianos/farmacología , Hidrogeles/farmacología
3.
ACS Appl Mater Interfaces ; 15(27): 32385-32394, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37365916

RESUMEN

Lithium metal batteries have emerged as a promising candidate for next-generation power systems. However, the high reactivity of lithium metal with liquid electrolytes has resulted in decreased battery safety and stability, which poses a significant challenge. Herein, we present a modified laponite-supported gel polymer electrolyte (LAP@PDOL GPE) that was fabricated using in situ polymerization initiated by a redox-initiating system at ambient temperature. The LAP@PDOL GPE effectively facilitates the dissociation of lithium salts via electrostatic interaction and simultaneously constructs multiple lithium-ion transport channels within the gel polymer network. This hierarchical GPE demonstrates a remarkable ionic conductivity of 5.16 × 10-4 S cm-1 at 30 °C. Furthermore, the robust laponite component of the LAP@PDOL GPE forms a barrier against Li dendrite growth while also participating in the establishment of a stable electrode/electrolyte interface with Si-rich components. The in situ polymerization process further improves the interfacial contact, enabling the LiFePO4/LAP@PDOL GPE/Li cell to exhibit an impressive capacity of 137 mAh g-1 at 1C, with a capacity retention of 98.5% even after 400 cycles. In summary, the developed LAP@PDOL GPE shows great potential in addressing the critical issues of safety and stability associated with lithium metal batteries while also delivering improved electrochemical performance.

4.
ChemSusChem ; 15(16): e202200993, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35713180

RESUMEN

Solid-state polymer electrolytes (SPEs) are expected to guarantee safe and durable operations of lithium metal batteries (LMBs). Herein, inspired by the salutary poly(vinyl ethylene carbonate) (PVEC) component in the solid electrolyte interphase, cross-linking vinyl ethylene carbonate and ionic liquid copolymers were synthesized by in-situ polymerization to serve as polymer electrolyte for LMBs. On one hand, due to rich ester bonds of PVEC, Li+ could transfer by coupling/decoupling with oxygen atoms. On the other hand, the imidazole ring of ionic liquid could facilitate the dissociation of lithium salt to promote the free movement of Li+ . The bifunctional component synergistically increased the ionic conductivity of the SPE to 1.97×10-4  S cm-1 at 25 °C. Meanwhile, it also showed a wide electrochemical window, superior mechanical properties, outstanding non-combustibility, and excellent interfacial compatibility. The bifunctional copolymer-based LiFePO4 batteries could normally operate at 0 to 60 °C, making them a promising candidate for wide-temperature-rang LMBs.

5.
ACS Appl Mater Interfaces ; 14(22): 26068-26076, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35638096

RESUMEN

The development of hydrogels and ionic gels for applications in fields such as soft electronics and wearable sensors is limited by liquid evaporation or leakage. Ionic conductors without volatile liquids are better choices for flexible and transparent devices. Here, a liquid polymer electrolyte (LPE) is prepared from a mixture of lithium bis(trifluoromethane)sulfonimide and polyethylene glycol (PEG) above the melting point of PEG. A three-dimensional (3D) printable solvent-free ionic elastomer (IE) is introduced by photopolymerization of ethyl acrylate and hydroxyethyl acrylate in the prepared LPE. The conductivity is significantly improved by the presence of a high content of the lithium salt. Dynamic cross-linking networks improve the stretchability and resilience of the elastomer. The pattern design capability of the IE is provided by light-curing 3D printing. These features demonstrate that the IE has broad application prospects in flexible sensors, ion skins, and soft robots.

6.
Adv Mater ; 34(4): e2106570, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34751468

RESUMEN

Electronic skin can detect minute electrical potential changes in the human skin and represent the body's state, which is critical for medical diagnostics and human-computer interface development. On the other hand, sweat has a significant effect on the signal stability, comfort, and safety of electronic skin in a real-world application. In this study, by modifying the cation and anion of a poly(ionic liquid) (PIL) and employing a spinning process, a PIL-based multilayer nanofiber membrane (PIL membrane) electronic skin with a dual gradient is created. The PIL electronic skin is moisture-wicking and breathable due to the hydrophilicity and pore size-gradients. The intrinsically antimicrobial activities of PILs allow the safe collection of bioelectrical signals from the human body, such as electrocardiography (ECG) and electromyography (EMG). In addition, a robotic hand may be operated in real-time, and a preliminary human-computer interface can be accomplished by simple processing of the collected EMG signal. This study establishes a novel practical approach for monitoring and using bioelectrical signals in real-world circumstances via the multifunctional electronic skin.


Asunto(s)
Líquidos Iónicos , Nanofibras , Dispositivos Electrónicos Vestibles , Antibacterianos/farmacología , Acción Capilar , Humanos
7.
ACS Appl Mater Interfaces ; 13(24): 28878-28888, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34109779

RESUMEN

Many creatures have excellent control over their form, color, and morphology, allowing them to respond to the interaction of environmental stimuli better. Here, the bioinspired synergistic shape-color-switchable actuators based on thermally induced shape-memory triethanolamine cross-linked polyurethane (TEAPU) and thermochromic ionic liquids (ILs) were prepared. The thermochromic ILs with various metalized anions, including bis(1-butyl-3-methylimidazolium) tetrachloro nickelate ([Bmim]2[NiCl4]) and bis(1-butyl-3-methylimidazolium) tetrachloride cobalt ([Bmim]2[CoCl4]), are investigated. The actuators exhibit thermochromic response, as evidenced by a shift in the color of the composites, which is due to the formation of the tetrahedral complex MCl42- (M = Ni and Co) after dehydration. The shape-color-switchable thermochromic actuators have strong molecular interaction between TEAPU and ILs and can mimic natural flowers and change the color and shape quickly in a narrow temperature range (30-70 °C). In addition, these thermochromic actuators can lift more than 50 times their weight and withstand strains of more than 1100%. The results represent the potential application in artificial muscle actuators and intelligent camouflages.

8.
ACS Appl Mater Interfaces ; 13(14): 16289-16299, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33784815

RESUMEN

Mechanically strong separators with good electrolyte wettability and low-shrinkage properties are desirable for highly efficient and safe lithium batteries. In this study, multifunctional nanofiber membranes are fabricated by electrospinning a homogeneous solution containing amphiphilic poly(ethylene glycol)diacrylate-grafted siloxane and polyacrylonitrile. After the chemical cross-linking of siloxane, the prepared nanofiber membranes are found to exhibit good mechanical properties, high thermostability, and superior electrolyte-philicity with aqueous and nonaqueous electrolytes. Li-metal cells with the fabricated membrane separator exhibit high cycling stability (Coulombic efficiency of 99.8% after 1000 cycles). Moreover, improved cycling stability of Li-sulfur batteries can be achieved using these membrane separators. These membrane separators can be further used in flexible aqueous lithium-ion batteries and exhibit steady electrochemistry performance. This work opens up a potential route for designing multifunctional universal separators for rechargeable batteries.

9.
Angew Chem Int Ed Engl ; 60(16): 8948-8959, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33527627

RESUMEN

In this study, we developed a superstrong and reversible adhesive, which can possess a high bonding strength in the "adhesive" state and detach with the application of heating. An ionic crystal (IC) gel, in which an IC was immobilized within a soft-polymer matrix, were synthesized via in situ photo-crosslinking of a precursor solution composed of N, N-dimethyl acrylamide (DMAA) and a melted IC. The obtained IC gel is homogenous and transparent at melt point. When cooled to the phase transition temperature of the IC, the gel turns into the adhesive with the adhesion strength of 5.82 MPa (on glasses), due to the excellent wetting of melted gel and a thin layer of crystalline IC with high cohesive strength formed on the substrates. The synergistic effects between IC, polymer networks and substrates were investigated by solid state 1 H NMR and molecular dynamics simulation. Such an adhesive layer is reversable and can be detached by heating and subsequent re-adhesion via cooling. This study proposed the new design of removable adhesives, which can be used in dynamic and complex environments.

10.
Adv Mater ; 33(12): e2008486, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33576082

RESUMEN

Human fingers exhibit both high sensitivity and wide tactile range. The finger skin structures are designed to display gradient microstructures and compressibility. Inspired by the gradient mechanical Young's modulus distribution, an electric-field-induced cationic crosslinker migration strategy is demonstrated to prepare gradient ionogels. Due to the gradient of the crosslinkers, the ionogels exhibit more than four orders of magnitude difference between the anode and the cathode side, enabling gradient ionogel-based flexible iontronic sensors having high-sensitivity and broader-range detection (from 3 × 102 to 2.5 × 106  Pa) simultaneously. Moreover, owing to the remarkable properties of the gradient ionogels, the flexible iontronic sensors also show good long-time stability (even after 10 000 cycles loadings) and excellent performance over a wide temperature range (from -108 to 300 °C). The flexible iontronic sensors are further integrated on soft grips, exhibiting remarkable performance under various conditions. These attractive features demonstrate that gradient ionogels will be promising candidates for smart sensor applications in complex and extreme conditions.

11.
Nanoscale ; 12(40): 20965-20972, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33090171

RESUMEN

Here, a strategy for the preparation of adjustable imidazolium-type ionic liquid (IL)-based carbon quantum dots (CQDs) was reported. The effect of chemical structure, including carbon chain length of the N-substitution and the type of anion, on the amphiphilicity of CQDs was systematically investigated. It was found that the hydrophobicity of CQDs can be increased with the increase of carbon chain length for substitution at the N3 position. Moreover, the amphiphilicity of CQDs was also switched by changing the hydrophilic anions to hydrophobic anions. Due to adjustable amphiphilicity, the hydrophilic and hydrophobic CQDs were used for the preparation of fluorescent hydrogels and organogels, respectively. The fluorescent CQD-doped gels showed light- and force-dual stimuli responsiveness, which provides more secure information encryption than traditional single encryption inks.

12.
Plant Physiol Biochem ; 155: 613-625, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32853854

RESUMEN

Crop plants, such as watermelon, suffer from severe Aluminum (Al3+)-toxicity in acidic soils with their primary root elongation being first arrested. However, the significance of apoplastic or symplastic Al3+-toxicity in watermelon root is scarcely reported. In this work, we identified a medium fruit type (ZJ) and a small fruit type (NBT) as Al+3-tolerant and sensitive based on their differential primary root elongation rate respectively, and used them to show the effects of symplastic besides apoplastic Al distribution in the watermelon's root. Although the Al content was higher in the root of NBT than ZJ, Al+3 allocated in their apoplast, vacuole and plastid fractions were not significantly different between the two cultivars. Thus, only a few proportion of Al+3 differentially distributed in the nucleus and mitochondria corresponded to interesting differential morphological and physiological disorders recorded in the root under Al+3-stress. The symplastic amount of Al+3 substantially induced the energy efficient catalase pathway in ZJ, and the energy consuming ascorbate peroxidase pathway in NBT. These findings coincided with obvious starch granule visibility in the root ultra-structure of ZJ than NBT, suggesting a differential energy was used in supporting the root elongation and nutrient uptake for Al+3-tolerance in the two cultivars. This work provides clues that could be further investigated in the identification of genetic components and molecular mechanisms associated with Al+3-tolerance in watermelon.


Asunto(s)
Aluminio/metabolismo , Antioxidantes/metabolismo , Citrullus/metabolismo , Raíces de Plantas/metabolismo , Minerales/metabolismo , Raíces de Plantas/ultraestructura
13.
ACS Appl Mater Interfaces ; 12(1): 1495-1503, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31814386

RESUMEN

Light-emitting diode based electronic screens emit near-ultraviolet radiation, which causes harm to the human eye after prolonged exposure. Thus, it is of paramount importance to prepare a sensitive and adjustable visible near-ultraviolet sensor for retinal warning. Herein, a series of bipyridine derivatives were synthesized to investigate effects of substituent groups and anions on photochromic properties via both experimental and theoretical studies. The introduction of dual hydrogen bonding urea onto substituted groups significantly accelerated the photochromic rate due to strong intermolecular interactions, which reduces molecular spacing and promotes the electron-transfer effect. Moreover, the photochromic rate was tuned by changing the size of the anion. Larger anions widen the molecular spacing and weaken the electron transfer and eventually lead to a decrease in the photochromic rate. Finally, bipyridine derivatives were printed on a polyethylene terephthalate film or paper as a sensitive, adjustable, and visible sensor to monitor near-ultraviolet radiation emitted by an light-emitting diode screen.


Asunto(s)
Técnicas Biosensibles/instrumentación , Dispositivos de Protección de los Ojos , Impresión Tridimensional , Rayos Ultravioleta/clasificación , Ojo/efectos de la radiación , Humanos
14.
ACS Appl Mater Interfaces ; 12(1): 591-600, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31820918

RESUMEN

With the growing demand for high energy and high power density rechargeable lithium-ion batteries, increasing research is focused on improving the output voltage of these batteries. Herein, a series of pyrrolidinium and piperidinium cations with various N-substituents (including cyanomethyl, benzyl, butyl, hexyl, and octyl groups) were synthesized and investigated with respect to their electrochemical stability under high voltages. The influence of substitutions at the N-position of pyrrolidinium and piperidinium cations on their high-voltage resistance was studied by both theoretical and experimental approaches. The voltage resistance was enhanced as the electron-donating ability of the substitutes increased. Furthermore, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide ([C6Py][TFSI]) exhibited the highest decomposition voltage at approximately 5.12 V and showed promising potential in a lithium-ion battery.

15.
Sci Adv ; 5(8): eaax0648, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31467977

RESUMEN

Gels that are freeze-resistant and heat-resistant and have high ultimate tensile strength are desirable in practical applications owing to their potential in designing flexible energy storage devices, actuators, and sensors. Here, a simple method for fabricating ionic liquid (IL)-based click-ionogels using thiol-ene click chemistry under mild condition is reported. These click-ionogels continue to exhibit excellent mechanical properties and resilience after 10,000 fatigue cycles. Moreover, due to several unique properties of ILs, these click-ionogels exhibit high ionic conductivity, transparency, and nonflammability performance over a wide temperature range (-75° to 340°C). Click-ionogel-based triboelectric nanogenerators exhibit excellent mechanical, freeze-thaw, and heat stability. These promising features of click-ionogels will promote innovative applications in flexible and safe device design.

16.
Chem Asian J ; 14(11): 2008-2017, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-30938070

RESUMEN

Practical applications of Zn-air batteries are usually limited by sluggish kinetics of oxygen reduction reaction. Replacing Pt-based catalysts with convenient, efficient and low-cost materials to boost oxygen reduction reaction is highly desirable. Herein, a class of Fe-N co-doped carbon nanofibers is successfully synthesized by pyrolysis of polyacrylonitrile/metal-containing ionic liquid-based electrospun films. The ionic liquids act as porogen to provide multiscale pores as well as activator to bring carbon nanofibers active sites. The catalyst possessing appropriate active sites and unique 3D porous architecture exhibits remarkable long-term stability and electrocatalytic activity. Particularly, the catalyst maintains a shape of membrane after carbonization, manifesting its direct use as air electrode without binders. It is notable that an all solid-state Zn-air battery based on the carbon nanofibers exhibits good flexibility, indicating its promising application as wearable devices.

17.
J Oral Pathol Med ; 47(6): 598-605, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29738605

RESUMEN

BACKGROUND: The aim of this study was to investigate the roles of keratin 4 (KRT4) gene in the development of human white sponge nevus (WSN). METHODS: Transgenic mice were created using the microinjection method with pcDNA3.1 vectors expressing KRT4 wild-type (WT) gene and E520K mutation. Polymerase chain reaction (PCR) and Western blotting were used to identify the genotype of transgenic founders and their filial generations. Expression of KRT4 in mouse oral mucosa was characterized by immunohistochemistry (IHC), and the whole epithelium layer of transgenic mice was observed using transmission electron microscope (TEM). RESULTS: The positive rate of KRT4 transgenic mice in F1 generation was 45.5%. Expression level of KRT4 protein was significantly higher in 2-month-old transgenic mice than WT mice. Furthermore, all the epithelial lamina of 3-month-old transgenic mice showed reduced staining of KRT4. The surface and spinous layers were full of hyalocytes and bubble cells, which are similar to the clinical symptoms of WSN. For the ultrastructure, both tonofilaments and Odland bodies increased. CONCLUSIONS: Our study indicated the mutated KRT4 gene may play important roles in the pathogenesis of WSN.


Asunto(s)
Queratina-4/metabolismo , Leucoqueratosis Mucosa Hereditaria/metabolismo , Enfermedades de la Boca/metabolismo , Animales , Epitelio/patología , Femenino , Humanos , Inmunohistoquímica , Queratina-4/genética , Leucoqueratosis Mucosa Hereditaria/genética , Leucoqueratosis Mucosa Hereditaria/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades de la Boca/genética , Enfermedades de la Boca/patología , Mucosa Bucal/metabolismo , Mucosa Bucal/patología , Mutación
18.
ChemSusChem ; 11(6): 1092-1098, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29334177

RESUMEN

Pollutants in wastewater include oils, dyes, and bacteria, making wastewater cleanup difficult. Multifunctional wastewater treatment media consisting of poly(ionic liquid)-grafted polypropylene (PP) nonwoven fabrics (PP@PIL) are prepared by a simple and scalable surface-grafting process. The fabricated PP@PIL fabrics exhibit impressive switchable oil/water separation (η>99 %) and dye absorption performance (q=410 mg g-1 ), as well as high antibacterial properties. The oil/water separation can be easily switched by anion exchanging of the PIL segments. Moreover, the multiple functions (oil/water separation, dye absorption, and antibacterial properties) occurred at the same time, and did not interfere with each other. The multifunctional fibrous filter can be easily regenerated by washing with an acid solution, and the absorption capacity is maintained after many recycling tests. These promising features make PIL-grafted PP nonwoven fabric a potential one-step treatment for multicomponent wastewater.


Asunto(s)
Absorción Fisicoquímica , Colorantes/química , Líquidos Iónicos/química , Aceites/química , Polipropilenos/química , Polipropilenos/farmacología , Agua/química , Antibacterianos/química , Antibacterianos/farmacología , Colorantes/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
19.
Macromol Rapid Commun ; 38(14)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28544020

RESUMEN

Heavy metal ion pollution has become a serious environmental problem. Herein, this study reports the synthesis of poly(ionic liquid) (PIL) membranes via in situ photo-crosslinking of vinyl imidazole with both hydrophilic and hydrophobic ionic liquid monomers. The resultant amphiphilic polymer membranes are porous and exhibit high absorption capacity of metal ions (including Hg2+ , Pb2+ , Cu2+ , Cd2+ , and Zn2+ ) in both high (1000 mg L-1 ) and low (10 mg L-1 ) concentration metal ion solutions. These metal ionic absorption membranes are easily regenerated in acid solution and can be reused without significant decreases of absorption capacity after many cycles. These PIL membranes may have potential applications as eco-friendly and safe heavy metal ion removal materials.


Asunto(s)
Líquidos Iónicos/química , Membranas Artificiales , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Polímeros/química , Técnicas de Química Analítica , Iones/química
20.
Chem Commun (Camb) ; 53(10): 1595-1598, 2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28054083

RESUMEN

Thermo- and electro-dual responsive poly(ionic liquid) (PIL) based electrolytes were synthesized by co-polymerization of N-isopropylacrylamide (NIPAM) with (or without) 3-butyl-1-vinyl-imidazolium bromide ([BVIm][Br]) using diallyl-viologen (DAV) as both the cross-linking agent and electrochromic material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...