Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 88
1.
Comput Struct Biotechnol J ; 23: 1833-1843, 2024 Dec.
Article En | MEDLINE | ID: mdl-38707540

Preventive cancer vaccines are highly effective in preventing viral infection-induced cancer, but advances in therapeutic cancer vaccines with a focus on eliminating cancer cells through immunotherapy are limited. To develop therapeutic cancer vaccines, the integration of optimal adjuvants is a potential strategy to enhance or complement existing therapeutic approaches. However, conventional adjuvants do not satisfy the criteria of clinical trials for therapeutic cancer vaccines. To improve the effects of adjuvants in therapeutic cancer vaccines, effective vaccination strategies must be formulated and novel adjuvants must be identified. This review offers an overview of the current advancements in therapeutic cancer vaccines and highlights in situ vaccination approaches that can be synergistically combined with other immunotherapies by harnessing the adjuvant effects. Additionally, the refinement of adjuvant systems using cutting-edge technologies and the elucidation of molecular mechanisms underlying immunogenic cell death to facilitate the development of innovative adjuvants have been discussed.

2.
J Environ Sci (China) ; 144: 236-248, 2024 Oct.
Article En | MEDLINE | ID: mdl-38802234

As a byproduct of water treatment, drinking water treatment aluminum sludge (DWTAS) has challenges related to imperfect treatment and disposal, which has caused potential harm to human health and the environment. In this paper, heat treatment DWTAS as a supplement cementitious material was used to prepare a green cementing material. The results show that the 800°C is considered as the optimum heat treatment temperature for DWTAS. DWTAS-800°C is fully activated after thermal decomposition to form incompletely crystallized highly active γ-Al2O3 and active SiO2. The addition of DWTAS promoted the formation of ettringite and C-(A)-S-H gel, which could make up for the low early compressive strength of cementing materials to a certain extent. When cured for 90 days, the compressive strength of the mortar with 30% DWTAS-800°C reached 44.86 MPa. The dynamic process was well simulated by Krstulovic-Dabic hydration kinetics model. This study provided a methodology for the fabrication of environmentally friendly and cost-effective compound cementitious materials and proposed a "waste-to-resource" strategy for the sustainable management of typical solid wastes.


Aluminum , Construction Materials , Sewage , Aluminum/chemistry , Kinetics , Sewage/chemistry , Water Purification/methods , Drinking Water/chemistry , Waste Disposal, Fluid/methods
3.
Elife ; 132024 May 17.
Article En | MEDLINE | ID: mdl-38757931

Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron-sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron-sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.


Erythropoiesis , Phosphatidylinositol 3-Kinases , Thrombopoiesis , Transcription Factors , Erythropoiesis/physiology , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Phosphatidylinositol 3-Kinases/metabolism , K562 Cells , Thrombopoiesis/physiology , Signal Transduction , Nuclear Proteins/metabolism , Cell Nucleus/metabolism , Protein Transport , Hematopoietic Stem Cells/metabolism , HSC70 Heat-Shock Proteins/metabolism , Active Transport, Cell Nucleus
4.
Talanta ; 273: 125872, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38471421

Gene methylation-related enzymes (GMREs) are disfunction and aberrantly expressed in a variety of cancers, such as lung, gastric, and pancreatic cancers and have important implications for human health. Therefore,it is critical for early diagnosis and therapy of tumor to develop strategies that allow rapid and sensitive quantitative and qualitative detection of GMREs. With the development of modern analytical techniques and the application of various biosensors, there are numerous methods have been developed for analysis of GMREs. Therefore, this paper provides a systematic review of the strategies for level and activity assay of various GMREs including methyltransferases and demethylase. The detection methods mainly involve immunohistochemistry, colorimetry, fluorescence, chemiluminescence, electrochemistry, etc. Then, this review also addresses the coordinated role of various detection probes, novel nanomaterials, and signal amplification methods. The aim is to highlight potential challenges in the present field, to expand the analytical application of GMREs detection strategies, and to meet the urgent need for future disease diagnosis and intervention.


Biosensing Techniques , Neoplasms , Humans , DNA Methylation , RNA Methylation , DNA/genetics , Biosensing Techniques/methods , Neoplasms/genetics
5.
Comput Biol Med ; 170: 108066, 2024 Mar.
Article En | MEDLINE | ID: mdl-38310806

Synthetic lethality (SL) occurs when the inactivation of two genes results in cell death while the inactivation of either gene alone is non-lethal. SL-based therapy has become a promising anti-cancer treatment option with the increasing researches and applications in clinical practice, while the specific therapeutic opportunities for various cancers have not yet been comprehensively investigated. Herein, we described a computational approach based on machine learning and statistical inference to discover the cancer-specific synthetic lethal interactions. First, Random Forest and One-Class SVM were used to perform cancer unbiased prediction of synthetic lethality. Then, two strategies, including mutual exclusivity and differential expression, were used to screen cancer-specific synthetic lethal interactions, resulting in 14,582 SL gene pairs in 33 cancer types. Finally, we developed a freely available database of CSSLdb (Cancer Specific Synthetic Lethality Database, http://www.tmliang.cn/CSSL/) to present cancer-specific synthetic lethal genetic interactions, which would enrich the relevant research and contribute to underlying therapy strategies based on synthetic lethality.


Neoplasms , Humans , Neoplasms/genetics , Neoplasms/drug therapy , Genes, Lethal , Databases, Factual , Machine Learning
6.
J Cardiovasc Pharmacol ; 83(1): 55-63, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37830839

ABSTRACT: Here, the fluorinated derivative, R1, was synthesized from the fluorinated dabigatran derivative (R0). The in vivo pharmacokinetic characteristics of orally administered R1, R0 injection, and dabigatran etexilate in rats were compared. Safety evaluation results showed no significant changes in the QRS wave or PR and QT intervals in rat lead II electrocardiograms. The possible toxicity of R1 was studied using the limit test method, and no obvious toxicity occurred in mice after the acute oral administration of R1. R1 inhibited thrombin-induced platelet aggregation in a dose-dependent manner, had an inhibitory effect on platelet aggregation induced by arachidonic acid and adenosine diphosphate, could significantly prolong prothrombin time and activated partial thromboplastin time, and increased fibrinogen levels. R1 is the optimal candidate compound from among more than 100 candidate compounds designed and synthesized by our research group. It was first selected through preliminary in vitro anticoagulant activity screening and further through in vivo mouse activity testing. A systematic pharmacodynamic study showed that R1 was superior to the raw material drug dabigatran ester; particularly, the absolute bioavailability of R1 increased by 206%, and this can overcome the low bioavailability defect associated with the marketed drug dabigatran ester. Another safety assessment of R1 indicated that there were no risks of acute poisoning in rats and cardiac toxicity in mice or rats. Therefore, R1 can be considered a new candidate anticoagulant compound with great potential and significance for further clinical research.


Benzimidazoles , Dabigatran , Rats , Mice , Animals , Dabigatran/toxicity , Benzimidazoles/pharmacology , Pyridines/pharmacology , Anticoagulants , Thrombin , Disease Models, Animal , Esters
7.
J Environ Sci (China) ; 138: 428-438, 2024 Apr.
Article En | MEDLINE | ID: mdl-38135408

This study aimed to explore the chemical looping gasification (CLG) reaction characteristics of the metal-supported composite phosphogypsum (PG) oxygen carriers (OCs) and the thermodynamic mechanism. The FactSage 7.1 thermodynamic simulation was used to explore the oxygen release and H2S removal mechanisms. The experimental results showed that the syngas yield of CLG with PG-CuFe2O4 was more than that with PG-Fe2O320/CuO40 or PG-Fe2O330/CuO30 OC at 1023 K when the water vapor content was 0.3. Furthermore, the maximum syngas yield of the CO selectivity was 70.3% and of the CO2 selectivity was 23.8%. The H2/CO value was 0.78, and the highest carbon conversion efficiency was 91.9% in PG-CuFe2O4 at the gasification temperature of 1073 K. The metal-supported PG composite oxygen carrier was proved not only as an oxygen carrier to participate in the preparation of syngas but also as a catalyst to catalyze coal gasification reactions. Furthermore, both the experimental results and FactSage 7.1 thermodynamic analysis revealed that the trapping mechanism of H2S by composite OCs was as follows: CuO first lost lattice oxygen as an oxygen carrier to generate Cu2O, which, in turn, reacted with H2S to generate Cu2S. This study provided efficient guidance and reference for OC design in CLG.


Oxygen , Phosphorus , Oxygen/chemistry , Calcium Sulfate , Metals , Biomass
8.
Int J Hyperthermia ; 40(1): 2278823, 2023.
Article En | MEDLINE | ID: mdl-37940134

Thermal ablation (TA) has harvested favorable outcomes in treating low-risk papillary thyroid microcarcinoma (PTMC). Preoperative assessment, intraoperative procedures and postoperative follow-up are all closely linked with the success and safety of TA on PTMC. However, many details in these aspects have not been systematically reviewed. This review firstly described the influence of preoperative assessment, especially for the risk of lymph node metastasis (LNM), as well as the molecular testing on the selection of TA for PTMC. Besides, we also summarized the experiences in treating special PTMC cases by TA, like multifocal lesions, PTMC located in the isthmus or adjacent to the dorsal capsule. At last, we discussed the follow-up strategies, the influence of the thyroid-stimulating hormone (TSH) level on the prognosis of PTMCs, and the management for recurrent cases. In conclusion, the procedures during the entire perioperative period should be standardized to improve the outcomes of TA in treating PTMC patients.


Carcinoma, Papillary , Thyroid Neoplasms , Humans , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Carcinoma, Papillary/diagnostic imaging , Carcinoma, Papillary/surgery , Carcinoma, Papillary/pathology , Prognosis , Ultrasonography, Interventional , Retrospective Studies
9.
Sci Adv ; 9(40): eadi6586, 2023 10 06.
Article En | MEDLINE | ID: mdl-37792941

Apoptotic inhibition and immune evasion have particular importance to efficient viral infection, while a dilemma often faced by viruses is that inhibiting apoptosis can up-regulate antiviral immune signaling. Herein, we uncovered that in addition to inhibiting caspase-8/extrinsic apoptosis, human cytomegalovirus (HCMV)-encoded UL36 suppresses interferon regulatory factor 3 (IRF3)-dependent immune signaling by directly targeting IRF3 to abrogate IRF3 interaction with stimulator of interferon genes or TANK-binding kinase 1 and inhibit IRF3 phosphorylation/activation. Although UL36-mediated caspase-8/extrinsic apoptosis inhibition enhances immune signaling, the immunosuppressing activity of UL36 counterbalances this immunoenhancing "side effect" undesirable for virus. Furthermore, we used mutational analyses to show that only the wild-type, but not the UL36 mutant losing either inhibitory activity, is sufficient to support effective HCMV replication in cells, showing the functional importance of the dual inhibition by UL36 for the HCMV life cycle. Together, our findings demonstrate a sophisticated mechanism by which HCMV tightly controls innate immune signaling and extrinsic apoptosis for efficient infection.


Cytomegalovirus , Interferon Regulatory Factor-3 , Humans , Caspase 8 , Immune Evasion , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Signal Transduction
10.
Endocr Connect ; 12(9)2023 Aug 11.
Article En | MEDLINE | ID: mdl-37467003

Objective: To assess the long-term efficacy and safety of microwave ablation (MWA) in treating low-risk papillary thyroid microcarcinomas (PTMC) and to identify predictive factors for the postoperative local tumor progression of PTMC. Methods: A total of 154 low-risk PTMC patients treated with MWA who were followed up for at least 3 months were retrospectively recruited. Ultrasonography was performed after MWA to assess the local tumor progression. Adverse events associated with MWA were recorded. The ablated volume (Va) and initial ablation ratio (IAR) were measured to assess their influences on the recurrence risk of PTMC. Results: The mean tumor volume of PTMC before MWA was 0.071 (0.039, 0.121) cm3, with a maximum diameter of 0.60 ± 0.18 cm. All PTMC patients were followed up for 6 (3, 18) months. Va increased immediately after MWA, then gradually decreased over time, till significantly smaller at 12 months than that before MWA (P < 0.05). The median volume reduction ratio at 24 months reached 100%, which was maintained during a 60-month follow-up. A total of 7 (4.55%) cases of local tumor progression were recorded during the follow-up. Kaplan-Meier survival analysis revealed that the rate of local tumor progression was significantly lower in PTMC patients with a maximum tumor diameter < 0.70 cm than in those with ≥0.70 cm (P = 0.031). A significant better prognosis was achieved in PTMC patients with IAR ≥ 15 than in those with IAR < 15 (P = 0.015). Sex, age (<55 years) and preoperative thyroid-stimulating hormone (>2.0 mU/L) of PTMC patients were not correlated with local tumor progression. Conclusion: MWA is an effective therapeutic strategy for low-risk PTMC with high safety. The maximum tumor diameter and IAR are predictive factors for the local tumor progression of PTMC after MWA.

11.
CNS Neurosci Ther ; 29(10): 2986-2997, 2023 10.
Article En | MEDLINE | ID: mdl-37122154

AIMS: Machine learning-based identification of key variables and prediction of postoperative delirium in patients with extensive burns. METHODS: Five hundred and eighteen patients with extensive burns who underwent surgery were included and randomly divided into a training set, a validation set, and a testing set. Multifactorial logistic regression analysis was used to screen for significant variables. Nine prediction models were constructed in the training and validation sets (80% of dataset). The testing set (20% of dataset) was used to further evaluate the model. The area under the receiver operating curve (AUROC) was used to compare model performance. SHapley Additive exPlanations (SHAP) was used to interpret the best one and to externally validate it in another large tertiary hospital. RESULTS: Seven variables were used in the development of nine prediction models: physical restraint, diabetes, sex, preoperative hemoglobin, acute physiological and chronic health assessment, time in the Burn Intensive Care Unit and total body surface area. Random Forest (RF) outperformed the other eight models in terms of predictive performance (ROC:84.00%) When external validation was performed, RF performed well (accuracy: 77.12%, sensitivity: 67.74% and specificity: 80.46%). CONCLUSION: The first machine learning-based delirium prediction model for patients with extensive burns was successfully developed and validated. High-risk patients for delirium can be effectively identified and targeted interventions can be made to reduce the incidence of delirium.


Delirium , Intensive Care Units , Humans , Machine Learning , Random Forest , Delirium/diagnosis , Delirium/etiology
12.
Nutrition ; 111: 112027, 2023 07.
Article En | MEDLINE | ID: mdl-37087943

OBJECTIVES: Burn patients are reportedly prone to complications, such as skeletal muscle wasting, anemia, and slow wound healing, during treatment, due to disease and metabolic depletion, which affect prognosis. Nutritional support is essential in treating burns and can significantly improve patient survival and reduce complications such as infection. This study aimed to perform a bibliometric analysis of the existing literature on nutritional support for burns and to explore possible future research trends. METHODS: The literature related to nutritional support for burns from 1983 to 2022 was searched on Web of Science. The included literature was used for bibliometric analysis using VOSviewer and CiteSpace software. RESULTS: There were 260 publications on nutritional support for burns. The United States contributes significantly to research in this area. The United States has the highest number of publications (n = 119) and citations (n = 4424). Nutrition support was the keyword with strongest burst intensity. A diet of ≥ 60% carbohydrates and 12% to 15% fat is suitable for burn patients, but the optimal ratios have not been fully determined. CONCLUSIONS: An optimal nutritional support program is essential for treating burn patients. Individualized nutritional support programs are the trend in this field. At present, more rigorous multicenter prospective studies with large samples are needed to explore the optimal ratios for specific dietary programs, especially macronutrients, to achieve satisfactory nutritional support and improve patient prognosis.


Burns , Nutritional Support , Humans , Prospective Studies , Bibliometrics , Burns/complications , Burns/therapy , Muscular Atrophy
14.
Theranostics ; 13(2): 560-577, 2023.
Article En | MEDLINE | ID: mdl-36632235

Rationale: Chemotherapy is a common clinical strategy for cancer treatment. However, the accompanied cardiomyopathy renders cancer patients under risk of another life-threatening condition. Whereas Hippo pathway is known to play key roles in both cancerogenesis and heart disease, it remains unclear whether Hippo pathway activation mediates chemotherapy-induced cardiomyopathy. Methods and Results: In human breast cancer cells, doxorubicin (DOX) significantly induced upregulation of Hippo kinase Mst1, inhibitory phosphorylation of YAP, mitochondrial damage, reduced cell viability and increased apoptosis. Hippo pathway inactivation by Mst1-siRNA transfection effectively improved cell survival and mitigated mitochondrial damage and cell apoptosis. Another anti-cancer drug YAP inhibitor verteporfin also induced lower cancer cell viability, apoptosis and mitochondrial injury. Chronic treatment with DOX in vivo (4 mg/kg/week for 6 weeks) caused mitochondrial damage and dysfunction, oxidative stress and cardiac fibrosis, while acute DOX treatment (16 mg/kg single bolus) also induced myocardial oxidative stress and mitochondrial abnormalities. Chronic treatment with verteporfin (2 months) resulted in cardiomyopathy phenotypes comparable to that by chronic DOX regimen. In transgenic mice with cardiac overexpression of kinase-dead mutant Mst1 gene, these adverse cardiac effects of DOX were significantly attenuated relative to wild-type littermates. Conclusions: Anti-cancer action of both DOX and verteporfin is associated with Hippo pathway activation. Such action on cardiac Hippo pathway mediates mitochondrial damage and cardiomyopathy.


Antineoplastic Agents , Cardiomyopathies , Hippo Signaling Pathway , Neoplasms , Animals , Humans , Mice , Apoptosis , Cardiomyopathies/chemically induced , Cardiotoxicity/etiology , Doxorubicin/pharmacology , Hippo Signaling Pathway/drug effects , Mice, Transgenic , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Neoplasms/drug therapy , Oxidative Stress , Verteporfin/pharmacology , Verteporfin/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use
15.
mBio ; 14(1): e0237022, 2023 02 28.
Article En | MEDLINE | ID: mdl-36507835

Herpes simplex virus 1 (HSV-1) is a DNA virus belonging to the family Herpesviridae. HSV-1 infection causes severe neurological disease in the central nervous system (CNS), including encephalitis. Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. Here, we demonstrate that HSV-1 induces ferroptosis, as hallmarks of ferroptosis, including Fe2+ overload, reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, lipid peroxidation, and mitochondrion shrinkage, are observed in HSV-1-infected cultured human astrocytes, microglia cells, and murine brains. Moreover, HSV-1 infection enhances the E3 ubiquitin ligase Keap1 (Kelch-like ECH-related protein 1)-mediated ubiquitination and degradation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidative genes, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin E2 (PGE2) plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by a ferroptosis inhibitor or a proteasome inhibitor to suppress Nrf2 degradation effectively alleviated HSV-1 encephalitis. Together, our findings demonstrate the interaction between HSV-1 infection and ferroptosis and provide novel insights into the pathogenesis of HSV-1 encephalitis. IMPORTANCE Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. In the current study, we demonstrate that HSV-1 infection induces ferroptosis, as Fe2+ overload, ROS accumulation, GSH depletion, lipid peroxidation, and mitochondrion shrinkage, all of which are hallmarks of ferroptosis, are observed in human cultured astrocytes, microglia cells, and murine brains infected with HSV-1. Moreover, HSV-1 infection enhances Keap1-dependent Nrf2 ubiquitination and degradation, which results in substantial reductions in the expression levels of antiferroptotic genes downstream of Nrf2, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of PTGS2 and PGE2 plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by either a ferroptosis inhibitor or a proteasome inhibitor to suppress HSV-1-induced Nrf2 degradation effectively alleviates HSV-1-caused neuro-damage and inflammation in infected mice. Overall, our findings uncover the interaction between HSV-1 infection and ferroptosis, shed novel light on the physiological impacts of ferroptosis on the pathogenesis of HSV-1 infection and encephalitis, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.


Encephalitis, Viral , Ferroptosis , Herpes Simplex , Herpesviridae Infections , Herpesvirus 1, Human , Humans , Animals , Mice , Herpesvirus 1, Human/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , Proteasome Inhibitors , Cyclooxygenase 2/metabolism , Inflammation
16.
Antioxidants (Basel) ; 13(1)2023 Dec 19.
Article En | MEDLINE | ID: mdl-38275624

The miniature pig is a suitable animal model for investigating human cardiovascular diseases. Nevertheless, the alterations in lipid metabolism within atherosclerotic plaques of miniature pigs, along with the underlying mechanisms, remain to be comprehensively elucidated. In this study, we aim to examine the alterations in lipid composition and associated pathways in the abdominal aorta of atherosclerotic pigs induced by a high-fat, high-cholesterol, and high-fructose (HFCF) diet using lipidomics and RNA-Seq methods. The results showed that the content and composition of aortic lipid species, particularly ceramide, hexosyl ceramide, lysophosphatidylcholine, and triglyceride, were significantly altered in HFCF-fed pigs. Meanwhile, the genes governing sphingolipid metabolism, iron ion homeostasis, apoptosis, and the inflammatory response were significantly regulated by the HFCF diet. Furthermore, C16 ceramide could promote iron deposition in RAW264.7 cells, leading to increased intracellular reactive oxygen species (ROS) production, apoptosis, and activation of the toll-like receptor 4 (TLR4)/nuclear Factor-kappa B (NF-қB) inflammatory pathway, which could be mitigated by deferoxamine. Our study demonstrated that dysregulated ceramide metabolism could increase ROS production, apoptosis, and inflammatory pathway activation in macrophages by inducing iron overload, thus playing a vital role in the pathogenesis of atherosclerosis. This discovery could potentially provide a new target for pharmacological therapy of cardiovascular diseases such as atherosclerosis.

17.
Expert Opin Drug Discov ; 17(12): 1329-1340, 2022 12.
Article En | MEDLINE | ID: mdl-36448326

INTRODUCTION: Boron has attracted extensive interest due to several FDA-approved boron-containing drugs and other pharmacological agents in clinical trials. As a semimetal, it has peculiar biochemical characteristics which could be utilized in designing novel drugs against drug-resistant viruses. Emerging and reemerging viral pandemics are major threats to human health. Accordingly, we aim to comprehensively review the current status of antiviral boron-containing compounds. AREAS COVERED: This review focuses on the utilization of boron to design molecules against viruses from two perspectives: (i) single boron atom-containing compounds acting on miscellaneous viral targets and (ii) boron clusters. The peculiar properties of antiviral boron-containing compounds and their diverse binding modes with viral targets are described in detail in this review. EXPERT OPINION: Compounds bearing boronic acid can interact with viral targets by forming covalent or robust hydrogen bonds. This feature is valuable for combating resistant viruses. Furthermore, boron clusters can form dihydrogen bonds and bear features such as three-dimensional aromaticity, hydrophobicity, and biological stability. All these features demonstrated boron as a probable essential element with immense potential for drug design.


Antiviral Agents , Boron , Humans , Boron/pharmacology , Boron/chemistry , Antiviral Agents/pharmacology , Boron Compounds/pharmacology , Boron Compounds/chemistry , Boron Compounds/therapeutic use , Boronic Acids/chemistry , Boronic Acids/therapeutic use , Drug Design
18.
Front Psychiatry ; 13: 989218, 2022.
Article En | MEDLINE | ID: mdl-36405924

Delirium, an acute brain dysfunction, is a common and serious complication in burn patients. The occurrence of delirium increases the difficulty of patient treatment, is associated with various adverse outcomes, and increases the burden on the patient's family. Many scholars have studied the factors that cause delirium, but the causes, pathogenesis, and treatment of delirium in burn patients have not been fully revealed. There is no effective pharmacological treatment for delirium, but active preventive measures can effectively reduce the incidence of delirium in burn patients. Therefore, it is necessary to study the relevant factors affecting the occurrence of delirium in burn patients. This study was conducted on December 20, 2021 by searching the PubMed database for a narrative review of published studies. The search strategy included keywords related to "burns," "delirium," and "risk factors." We reviewed the characteristics of delirium occurrence in burn patients and various delirium assessment tools, and summarized the risk factors for the development of delirium in burn patients in terms of personal, clinical, and environmental factors, and we found that although many risk factors act on the development of delirium in burn patients, some of them, such as clinical and environmental factors, are modifiable, suggesting that we can estimate the exposure of burn patients to risk factors by assessing their likelihood of delirium occurring and to make targeted interventions that provide a theoretical basis for the prevention and treatment of burn delirium.

19.
Plants (Basel) ; 11(21)2022 Oct 26.
Article En | MEDLINE | ID: mdl-36365300

Relevant studies have demonstrated that urban green spaces composed of various types of plants are able to alleviate the morbidity and mortality of respiratory diseases, by reducing air pollution levels. In order to explore the relationship between the spatial pattern of urban green spaces and air pollutant concentrations, this study takes 37 garden cities with subtropical monsoon climate in China as the research object and selects the urban air quality monitoring data and land use type data in 2019 to analyze the relationship between the spatial pattern and the air pollutant concentration through the landscape metrics model and spatial regression model. Moreover, the threshold effect of the impact of green space on air pollutant concentrations is estimated, as well. The results showed that the spatial pattern of urban green space was significantly correlated with the concentrations of PM2.5 (PM with aerodynamic diameters of 2.5 mmor less), NO2 (Nitrogen Dioxide), and SO2 (Sulfur dioxide) pollutants in the air, while the concentrations of PM10 (PM with aerodynamic diameters of 10 mmor less) pollutants were not significantly affected by the green space pattern. Among them, the patch shape index (LSI), patch density (PD) and patch proportion in landscape area (PLAND) of forest land can affect the concentration of PM2.5, NO2, and SO2, respectively. The PLAND, PD, and LSI of grassland and farmland can also have an additional impact on the concentration of SO2 pollutants. The study also found that there was a significant threshold effect within the impact mechanism of urban green space landscape pattern indicators (LSI, PD, PLAND) on the concentrations of PM2.5, NO2, and SO2 air pollutants. The results of this study not only clarified the impact mechanism of the spatial pattern of urban green space on air pollutant concentrations but also provided quantitative reference and scientific basis for the optimization and updating of urban green space to promote public health.

20.
Bioorg Chem ; 129: 106192, 2022 Dec.
Article En | MEDLINE | ID: mdl-36265355

Capsid assembly modulators (CAMs) represent a novel class of antiviral agents targeting hepatitis B virus (HBV) capsid to disrupt the assembly process. NVR 3-778 is the first CAM to demonstrate antiviral activity in patients infected with HBV. However, the relatively low aqueous solubility and moderate activity in the human body halted further development of NVR 3-778. To improve the anti-HBV activity and the drug-like properties of NVR 3-778, we designed and synthesized a series of NVR 3-778 derivatives. Notably, phenylboronic acid-bearing compound 7b (EC50 = 0.83 ± 0.33 µM, CC50 = 19.4 ± 5.0 µM) displayed comparable anti-HBV activity to NVR 3-778 (EC50 = 0.73 ± 0.20 µM, CC50 = 23.4 ± 7.0 µM). Besides, 7b showed improved water solubility (328.8 µg/mL, pH 7) compared to NVR 3-778 (35.8 µg/mL, pH 7). Size exclusion chromatography (SEC) and quantification of encapsidated viral RNA were used to demonstrate that 7b behaves as a class II CAM similar to NVR 3-778. Moreover, molecular dynamics (MD) simulations were conducted to rationalize the structure-activity relationships (SARs) of these novel derivatives and to understand their key interactions with the binding pocket, which provide useful indications for guiding the further rational design of more effective anti-HBV drugs.


Antiviral Agents , Benzamides , Capsid , Drug Design , Hepatitis B virus , Virus Assembly , Humans , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzamides/chemical synthesis , Benzamides/chemistry , Benzamides/pharmacology , Capsid/drug effects , Capsid/metabolism , Capsid Proteins/metabolism , Hepatitis B virus/drug effects , Hepatitis B virus/physiology , Virus Assembly/drug effects
...