Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 194: 105522, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532306

RESUMEN

Insects are frequently exposed to a range of insecticides that can alter the structure of the commensal microbiome. However, the effects of exposure to non-target pesticides (including non-target insecticides and fungicides) on insect pest microbiomes are still unclear. In the present study, we exposed Nilaparvata lugens to three target insecticides (nitenpyram, pymetrozine, and avermectin), a non-target insecticide (chlorantraniliprole), and two fungicides (propiconazole and tebuconazole), and observed changes in the microbiome's structure and function. Our results showed that both non-target insecticide and fungicides can disrupt the microbiome's structure. Specifically, symbiotic bacteria of N. lugens were more sensitive to non-target insecticide compared to target insecticide, while the symbiotic fungi were more sensitive to fungicides. We also found that the microbiome in the field strain was more stable under pesticides exposure than the laboratory strain (a susceptible strain), and core microbial species g_Pseudomonas, s_Acinetobacter soli, g_Lactobacillus, s_Metarhizium minus, and s_Penicillium citrinum were significantly affected by specifically pesticides. Furthermore, the functions of symbiotic bacteria in nutrient synthesis were predicted to be significantly reduced by non-target insecticide. Our findings contribute to a better understanding of the impact of non-target pesticides on insect microbial communities and highlight the need for scientific and rational use of pesticides.


Asunto(s)
Fungicidas Industriales , Hemípteros , Insecticidas , Microbiota , Plaguicidas , Animales , Insecticidas/toxicidad , Plaguicidas/farmacología , Fungicidas Industriales/farmacología , Bacterias , Resistencia a los Insecticidas
2.
Pest Manag Sci ; 79(9): 3141-3148, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37013938

RESUMEN

BACKGROUND: Previous studies have shown that fungicides have insecticidal activity that can potentially be used as an insecticide resistance management strategy in the brown planthopper Nilaparvata lugens (Stål). However, the mechanism that induces mortality of N. lugens remains elusive. RESULTS: In the present study, the insecticidal activities of 14 fungicides against N. lugens were determined, of which tebuconazole had the highest insecticidal activity compared with the other fungicides. Furthermore, tebuconazole significantly inhibited the expression of the chitin synthase gene NlCHS1; the chitinase genes NlCht1, NlCht5, NlCht7, NlCht9, and NlCht10; and the ß-N-acetylhexosaminidase genes NlHex3, NlHex4, NlHex5 and NlHex6; it significantly suppressed the expression of ecdysteroid biosynthetic genes as well, including SDR, CYP307A2, CYP307B1, CYP306A2, CYP302A1, CYP315A1 and CYP314A1 of N. lugens. Additionally, tebuconazole affected the diversity, structure, composition, and function of the symbiotic fungi of N. lugens, as well as the relative abundance of saprophytes and pathogens, suggesting that tebuconazole reshapes the diversity and function of symbiotic fungi of N. lugens. CONCLUSION: Our findings illustrate the insecticidal mechanism of tebuconazole, possibly by inhibiting normal molting or disrupting microbial homeostasis in N. lugens, and provide an important rationale for developing novel insect management strategies to delay escalating insecticide resistance. © 2023 Society of Chemical Industry.


Asunto(s)
Fungicidas Industriales , Hemípteros , Insecticidas , Animales , Insecticidas/farmacología , Insecticidas/metabolismo , Fungicidas Industriales/farmacología , Fungicidas Industriales/metabolismo , Triazoles/farmacología , Resistencia a los Insecticidas/genética , Hemípteros/metabolismo
3.
NPJ Biofilms Microbiomes ; 9(1): 2, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635299

RESUMEN

Microbiome-mediated insecticide resistance is an emerging phenomenon found in insect pests. However, microbiome composition can vary by host genotype and environmental factors, but how these variations may be associated with insecticide resistance phenotype remains unclear. In this study, we compared different field and laboratory strains of the brown planthopper Nilaparvata lugens in their microbiome composition, transcriptome, and insecticide resistance profiles to identify possible patterns of correlation. Our analysis reveals that the abundances of core bacterial symbionts are significantly correlated with the expression of several host detoxifying genes (especially NlCYP6ER1, a key gene previously shown involved in insecticides resistance). The expression levels of these detoxifying genes correlated with N. lugens insecticide susceptibility. Furthermore, we have identified several environmental abiotic factors, including temperature, precipitation, latitude, and longitude, as potential predictors of symbiont abundances associated with expression of key detoxifying genes, and correlated with insecticide susceptibility levels of N. lugens. These findings provide new insights into how microbiome-environment-host interactions may influence insecticide susceptibility, which will be helpful in guiding targeted microbial-based strategies for insecticide resistance management in the field.


Asunto(s)
Hemípteros , Insecticidas , Microbiota , Animales , Insecticidas/farmacología , Bacterias/genética , Resistencia a los Insecticidas/genética
4.
Int J Biol Macromol ; 229: 732-745, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36586657

RESUMEN

Gold nanoparticles (AuNPs) have attracted extensive attention in the past few years due to their unique properties and great potential application in catalysis. However, the application of AuNPs remains a significant challenge due to the lack of high efficiency and stability caused by aggregation. Immobilization of AuNPs on appropriate support shows promising results in avoiding aggregation and improving catalytic activity. In this work, reduced graphene oxide/chitosan/gold nanoparticles (rGO/CHS/AuNPs) composites were prepared using chitosan with different molecular weights (MW) as a reducing agent and stabilizer, and characterized by FT-IR, XRD, XPS, SEM, FESEM, EDS, TEM, HRTEM, and TGA. The preparation conditions of rGO/CHS/AuNPs composites, including chitosan MW, CHS/GO mass ratio, reaction temperature and time, and HAuCl4 concentration were investigated in detail. The results indicated that reduction activity of chitosan for GO increased with the decrease of chitosan MW. The C/O ratio of rGO reduced by low molecular weight chitosan (LMWC) with viscosity-average molecular weight (Mv) of 21 kDa was 6.34. Small spherical AuNPs were uniformly immobilized on the rGO surface. The particle size of AuNPs increased from 9.29 to 13.03 nm as chitosan MW decreased from 465 to 21 kDa. The rGO/CHS/AuNPs showed good catalytic activity for the reduction of 4-NP in the presence of NaBH4. The catalytic activity of rGO/CHS/AuNPs was closely related to chitosan MW. rGO/CHS/AuNPs synthesized by LMWC with Mv of 21 kDa showed the highest kinetic rate constant of 0.2067 min-1. The results of this experimental study could be useful in the development of effective catalysts for the reduction of aromatic nitro compounds.


Asunto(s)
Quitosano , Nanopartículas del Metal , Oro , Espectroscopía Infrarroja por Transformada de Fourier
5.
J Integr Plant Biol ; 65(3): 703-720, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36511119

RESUMEN

Water uptake is crucial for crop growth and development and drought stress tolerance. The water channel aquaporins (AQP) play important roles in plant water uptake. Here, we discovered that a jasmonic acid analog, coronatine (COR), enhanced maize (Zea mays) root water uptake capacity under artificial water deficiency conditions. COR treatment induced the expression of the AQP gene Plasma membrane intrinsic protein 2;5 (ZmPIP2;5). In vivo and in vitro experiments indicated that COR also directly acts on ZmPIP2;5 to improve water uptake in maize and Xenopus oocytes. The leaf water potential and hydraulic conductivity of roots growing under hyperosmotic conditions were higher in ZmPIP2;5-overexpression lines and lower in the zmpip2;5 knockout mutant, compared to wild-type plants. Based on a comparison between ZmPIP2;5 and other PIP2s, we predicted that COR may bind to the functional site in loop E of ZmPIP2;5. We confirmed this prediction by surface plasmon resonance technology and a microscale thermophoresis assay, and showed that deleting the binding motif greatly reduced COR binding. We identified the N241 residue as the COR-specific binding site, which may activate the channel of the AQP tetramer and increase water transport activity, which may facilitate water uptake under hyperosmotic stress.


Asunto(s)
Acuaporinas , Zea mays , Zea mays/genética , Agua/metabolismo , Membrana Celular/metabolismo , Acuaporinas/química , Acuaporinas/genética , Acuaporinas/metabolismo , Proteínas de la Membrana/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Sensors (Basel) ; 22(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36560265

RESUMEN

Magnetic rings are widely used in automotive, home appliances, and consumer electronics. Due to the materials used, processing techniques, and other factors, there will be top cracks, internal cracks, adhesion, and other defects on individual magnetic rings during the manufacturing process. To find such defects, the most sophisticated YOLOv5 target identification algorithm is frequently utilized. However, it has problems such as high computation, sluggish detection, and a large model size. This work suggests an enhanced lightweight YOLOv5 (MR-YOLO) approach for the identification of magnetic ring surface defects to address these issues. To decrease the floating-point operation (FLOP) in the feature channel fusion process and enhance the performance of feature expression, the YOLOv5 neck network was added to the Mobilenetv3 module. To improve the robustness of the algorithm, a Mosaic data enhancement technique was applied. Moreover, in order to increase the network's interest in minor defects, the SE attention module is inserted into the backbone network to replace the SPPF module with substantially more calculations. Finally, to further increase the new network's accuracy and training speed, we substituted the original CIoU-Ioss for SIoU-Loss. According to the test, the FLOP and Params of the modified network model decreased by 59.4% and 47.9%, respectively; the reasoning speed increased by 16.6%, the model's size decreased by 48.1%, and the mAP only lost by 0.3%. The effectiveness and superiority of this method are proved by an analysis and comparison of examples.


Asunto(s)
Algoritmos , Comercio , Electrónica , Cuello , Fenómenos Magnéticos
7.
Int J Biol Macromol ; 209(Pt A): 1352-1358, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35460755

RESUMEN

Odorant binding protein (OBP) can interact with small-molecule compounds insecticides and thereby modulate variation in insecticide susceptibility in insects. However, the regulatory mechanism of OBP-mediated insecticide resistance in Nilaparvata lugens, a destructive rice pest in Asia, remains unclear. Here, we explored the role of NlOBP3 in the resistance of N. lugens to nitenpyram and sulfoxaflor. The results showed that NlOBP3 was overexpressed in association with nitenpyram and sulfoxaflor resistance, and NlOBP3 silencing significantly increased the mortality of N. lugens to nitenpyram and sulfoxaflor, suggesting that NlOBP3 may be associated with nitenpyram and sulfoxaflor resistance in N. lugens. OBP localization revealed that NlOBP3 was highly expressed in all nymph stages and was enriched in the antennae, legs, body wall, and fat body. RT-qPCR analyses showed that the mRNA levels of NlOBP3 were significantly affected by nitenpyram and sulfoxaflor. Additionally, molecular docking predicted that there were multiple binding sites that may played key roles in the binding of NlOBP3 with nitenpyram and sulfoxaflor. The current study identifies a previously undescribed mechanism of insecticide resistance in N. lugens, showing that NlOBP3 is likely to be involved in the evolution of nitenpyram and sulfoxaflor resistance in N. lugens.


Asunto(s)
Hemípteros , Insecticidas , Animales , Hemípteros/genética , Insecticidas/farmacología , Simulación del Acoplamiento Molecular , Neonicotinoides/farmacología , Odorantes , Piridinas , Compuestos de Azufre
8.
Insect Sci ; 29(1): 177-187, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33783101

RESUMEN

The evolution of nitenpyram resistance has been confirmed to be related to overexpression of two key metabolic enzyme genes, CYP6ER1 and CarE1, in Nilaparvata lugens, a highly destructive rice pest that causes substantial economic losses and has developed insecticide resistance. As microRNAs (miRNAs) are important post-transcriptional regulators of gene expression, whether they are involved in nitenpyram resistance is poorly understood in N. lugens. In this study, knockdown of key genes in the miRNA biogenesis pathway (Dicer1, Drosha, and Argonaute1) changed CYP6ER1 and CarE1 abundance, which confirmed the importance of miRNAs in nitenpyram resistance. Furthermore, global screening of miRNAs associated with nitenpyram resistance in N. lugens was performed, and a total of 42 known and 178 novel miRNAs were identified; of these, 57 were differentially expressed between the susceptible and resistant strains, and two (novel_85 and novel_191) were predicted to target CYP6ER1 and CarE1, respectively. Luciferase reporter assays demonstrated that novel_85 and novel_191 bind to the CYP6ER1 and CarE1 coding regions, respectively, and downregulate their expression. Moreover, modulating novel_85 and novel_191 expression by injection of miRNA inhibitors and mimics significantly altered N. lugens nitenpyram susceptibility. This is the first study to systematically screen and identify miRNAs associated with N. lugens nitenpyram resistance, and provides important information that can be used to develop new miRNA-based targets in insecticide resistance management.


Asunto(s)
Hemípteros , Insecticidas , MicroARNs , Animales , Sistema Enzimático del Citocromo P-450 , Hemípteros/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , MicroARNs/genética , Neonicotinoides , Nitrocompuestos
9.
Microb Ecol ; 83(4): 1049-1058, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34302509

RESUMEN

Understanding the composition of microorganismal communities hosted by insect pests is an important prerequisite for revealing their functions and developing new pest control strategies. Although studies of the structure of the microbiome of Nilaparvata lugens have been published, little is known about the dynamic changes in this microbiome across different developmental stages, and an understanding of the core microbiota is still lacking. In this study, we investigated the dynamic changes in bacteria and fungi in different developmental stages of N. lugens using high-throughput sequencing technology. We observed that the microbial diversity in eggs and mated adults was higher than that in nymphs and unmated adults. We also observed a notable strong correlation between fungal and bacterial α-diversity, which suggests that fungi and bacteria are closely linked and may perform functions collaboratively during the whole developmental period. Arsenophonus and Hirsutella were the predominant bacterial and fungal taxa, respectively. Bacteria were more conserved than fungi during the transmission of the microbiota between developmental stages. Compared with that in the nymph and unmated adult stages of N. lugens, the correlation between bacterial and fungal communities in the mated adult and egg stages was stronger. Moreover, the core microbiota across all developmental stages in N. lugens was identified, and there were more bacterial genera than fungal genera; notably, the core microbiota of eggs, nymphs, and mated and unmated adults showed distinctive functional enrichment. These findings highlight the potential value of further exploring microbial functions during different developmental stages and developing new pest management strategies.


Asunto(s)
Hemípteros , Microbiota , Animales , Bacterias/genética , Hemípteros/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Ninfa/microbiología
10.
Insects ; 12(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34940166

RESUMEN

Monitoring is an important component of insecticide resistance management. In this study, resistance monitoring was conducted on 18 field populations in China. The results showed that S. furcifera developed high levels of resistance to chlorpyrifos and buprofezin, and S. furcifera showed low to moderate levels of resistance to imidacloprid, thiamethoxam, dinotefuran, clothianidin, sulfoxaflor, isoprocarb and ethofenprox. Sogatella furcifera remained susceptible or low levels of resistance to nitenpyram. LC50 values of nitenpyram and dinotefuran, imidacloprid, thiamethoxam, clothianidin and chlorpyrifos exhibited significant correlations, as did those between dinotefuran and thiamethoxam, clothianidin, sulfoxaflor, imidacloprid, isoprocarb and buprofezin. Similarly, significant correlations were observed between thiamethoxam and clothianidin, sulfoxaflor and imidacloprid. In addition, the activity of EST in field populations of S. furcifera were significantly correlated with the LC50 values of nitenpyram, thiamethoxam and clothianidin. These results will help inform effective insecticide resistance management strategies to delay the development of insecticide resistance in S. furcifera.

11.
J Integr Plant Biol ; 63(12): 2150-2163, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34647689

RESUMEN

Grain size is determined by the size and number of cells in the grain. The regulation of grain size is crucial for improving crop yield; however, the genes and molecular mechanisms that control grain size remain elusive. Here, we report that a member of the detoxification efflux carrier /Multidrug and Toxic Compound Extrusion (DTX/MATE) family transporters, BIG RICE GRAIN 1 (BIRG1), negatively influences grain size in rice (Oryza sativa L.). BIRG1 is highly expressed in reproductive organs and roots. In birg1 grain, the outer parenchyma layer cells of spikelet hulls are larger than in wild-type (WT) grains, but the cell number is unaltered. When expressed in Xenopus laevis oocytes, BIRG1 exhibits chloride efflux activity. Consistent with this role of BIRG1, the birg1 mutant shows reduced tolerance to salt stress at a toxic chloride level. Moreover, grains from birg1 plants contain a higher level of chloride than those of WT plants when grown under normal paddy field conditions, and the roots of birg1 accumulate more chloride than those of WT under saline conditions. Collectively, the data suggest that BIRG1 in rice functions as a chloride efflux transporter that is involved in mediating grain size and salt tolerance by controlling chloride homeostasis.


Asunto(s)
Oryza , Tolerancia a la Sal , Cloruros , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal/genética
12.
ISME J ; 15(12): 3693-3703, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34188180

RESUMEN

The interactions between insects and their bacterial symbionts are shaped by a variety of abiotic factors, including temperature. As global temperatures continue to break high records, a great deal of uncertainty surrounds how agriculturally important insect pests and their symbionts may be affected by elevated temperatures, and its implications for future pest management. In this study, we examine the role of bacterial symbionts in the brown planthopper Nilaparvata lugens response to insecticide (imidacloprid) under different temperature scenarios. Our results reveal that the bacterial symbionts orchestrate host detoxification metabolism via the CncC pathway to promote host insecticide resistance, whereby the symbiont-inducible CncC pathway acts as a signaling conduit between exogenous abiotic stimuli and host metabolism. However, this insect-bacterial partnership function is vulnerable to high temperature, which causes a significant decline in host-bacterial content. In particular, we have identified the temperature-sensitive Wolbachia as a candidate player in N. lugens detoxification metabolism. Wolbachia-dependent insecticide resistance was confirmed through a series of insecticide assays and experiments comparing Wolbachia-free and Wolbachia-infected N. lugens and also Drosophila melanogaster. Together, our research reveals elevated temperatures negatively impact insect-bacterial symbiosis, triggering adverse consequences on host response to insecticide (imidacloprid) and potentially other xenobiotics.


Asunto(s)
Hemípteros , Insecticidas , Animales , Drosophila melanogaster , Insectos , Resistencia a los Insecticidas , Insecticidas/toxicidad , Temperatura
13.
Pest Manag Sci ; 77(9): 4159-4167, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33934482

RESUMEN

BACKGROUND: Uridine diphosphate-glycosyltransferases (UGTs) are phase II metabolic enzymes involved in metabolism of toxins and resistance to insecticides in insect pests. Reactive oxygen species (ROS) induced by xenobiotics are important for activation of detoxification pathways. However, relationships between ROS and UGTs involved in toxin metabolism and insecticide resistance remain unclear. RESULTS: Here, involvement of dual oxidase (Duox)-dependent ROS in regulating UGT expression-mediated insecticide resistance in the brown planthopper (Nilaparvata lugens) was investigated. The overexpression of NlUGT386F2 contributed to the resistance of N. lugens to clothianidin. Furthermore, the ROS inhibitor (N-acetylcysteine) significantly reduced the expression of NlUGT386F2 and increased the susceptibility of N. lugens to clothianidin. Silencing the ROS producer Duox significantly increased the susceptibility of N. lugens to clothianidin through the down-regulation of NlUGT386F2 expression. CONCLUSION: NlDuox-dependent ROS regulates NlUGT386F2 expression-mediated clothianidin resistance in brown planthopper. These observations further our understanding of the metabolism of toxins and of insecticide-resistance in insect pests.


Asunto(s)
Hemípteros , Insecticidas , Animales , Oxidasas Duales , Guanidinas , Hemípteros/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Neonicotinoides , Especies Reactivas de Oxígeno , Tiazoles
15.
Sci Adv ; 7(3)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523901

RESUMEN

Long-distance transport of the phytohormone abscisic acid (ABA) has been studied for ~50 years, yet its mechanistic basis and biological significance remain very poorly understood. Here, we show that leaf-derived ABA controls rice seed development in a temperature-dependent manner and is regulated by defective grain-filling 1 (DG1), a multidrug and toxic compound extrusion transporter that effluxes ABA at nodes and rachilla. Specifically, ABA is biosynthesized in both WT and dg1 leaves, but only WT caryopses accumulate leaf-derived ABA. Our demonstration that leaf-derived ABA activates starch synthesis genes explains the incompletely filled and floury seed phenotypes in dg1 Both the DG1-mediated long-distance ABA transport efficiency and grain-filling phenotypes are temperature sensitive. Moreover, we extended these mechanistic insights to other cereals by observing similar grain-filling defects in a maize DG1 ortholog mutant. Our study demonstrates that rice uses a leaf-to-caryopsis ABA transport-based mechanism to ensure normal seed development in response to variable temperatures.

16.
Mol Plant ; 14(5): 774-786, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33601051

RESUMEN

Nitrate-induced Ca2+ signaling is crucial for the primary nitrate response in plants. However, the molecular mechanism underlying the generation of the nitrate-specific calcium signature remains unknown. We report here that a cyclic nucleotide-gated channel (CNGC) protein, CNGC15, and the nitrate transceptor (NRT1.1) constitute a molecular switch that controls calcium influx depending on nitrate levels. The expression of CNGC15 is induced by nitrate, and its protein is localized at the plasma membrane after establishment of young seedlings. We found that disruption of CNGC15 results in the loss of the nitrate-induced Ca2+ signature (primary nitrate response) and retards root growth, reminiscent of the phenotype observed in the nrt1.1 mutant. We further showed that CNGC15 is an active Ca2+-permeable channel that physically interacts with the NRT1.1 protein in the plasma membrane. Importantly, we discovered that CNGC15-NRT1.1 interaction silences the channel activity of the heterocomplex, which dissociates upon a rise in nitrate levels, leading to reactivation of the CNGC15 channel. The dynamic interactions between CNGC15 and NRT1.1 therefore control the channel activity and Ca2+ influx in a nitrate-dependent manner. Our study reveals a new nutrient-sensing mechanism that utilizes a nutrient transceptor-channel complex assembly to couple nutrient status to a specific Ca2+ signature.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Señalización del Calcio , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Canales de Potasio/metabolismo , Fenotipo , Transducción de Señal
17.
Gigascience ; 10(1)2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33484242

RESUMEN

BACKGROUND: previously we developed Lilikoi, a personalized pathway-based method to classify diseases using metabolomics data. Given the new trends of computation in the metabolomics field, it is important to update Lilikoi software. RESULTS: here we report the next version of Lilikoi as a significant upgrade. The new Lilikoi v2.0 R package has implemented a deep learning method for classification, in addition to popular machine learning methods. It also has several new modules, including the most significant addition of prognosis prediction, implemented by Cox-proportional hazards model and the deep learning-based Cox-nnet model. Additionally, Lilikoi v2.0 supports data preprocessing, exploratory analysis, pathway visualization, and metabolite pathway regression. CONCULSION: Lilikoi v2.0 is a modern, comprehensive package to enable metabolomics analysis in R programming environment.


Asunto(s)
Aprendizaje Profundo , Aprendizaje Automático , Metabolómica , Modelos de Riesgos Proporcionales , Programas Informáticos
18.
Insect Sci ; 28(4): 1049-1060, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32495409

RESUMEN

Carboxylesterases (CarEs) represent one of the major detoxification enzyme families involved in insecticide resistance. However, the function of specific CarE genes in insecticide resistance is still unclear in the insect Nilaparvata lugens (Stål), a notorious rice crop pest in Asia. In this study, a total of 29 putative CarE genes in N. lugens were identified, and they were divided into seven clades; further, the ß-esterase clade was significantly expanded. Tissue-specific expression analysis found that 17 CarE genes were abundantly distributed in the midgut and fat body, while 12 CarE genes were highly expressed in the head. The expression of most CarE genes was significantly induced in response to the challenge of nitenpyram, triflumezopyrim, chlorpyrifos, isoprocarb and etofenprox. Among these, the expression levels of NlCarE2, NlCarE4, NlCarE9, NlCarE17 and NlCarE24 were increased by each insecticide. Real-time quantitative polymerase chain reaction and RNA interference assays revealed the NlCarE1 gene to be a candidate gene mainly involved in nitenpyram resistance, while simultaneously silencing NlCarE1 and NlCarE19 produced a stronger effect than silencing either one individually, suggesting a cooperative relationship in resistance formation. These findings lay the foundation for further clarification of insecticide resistance mediated by CarE in N. lugens.


Asunto(s)
Carboxilesterasa/genética , Hemípteros/genética , Resistencia a los Insecticidas/genética , Animales , Perfilación de la Expresión Génica , Hemípteros/efectos de los fármacos , Proteínas de Insectos/genética , Insecticidas/farmacología , Neonicotinoides/farmacología
19.
Front Plant Sci ; 11: 1119, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793269

RESUMEN

In higher-plant reproduction, the compatibility of pollen tube germination in the pistil is essential for successful double fertilization. It has been reported that Mildew Locus O (MLO) family gene NTA (MLO7), expressing in synergid cells, can correctly guide pollen tubes. However, the molecular mechanism underlying the interacting partners to MLOs in the fertilization is still unknown. In our study, we identified the direct protein interaction between CML9 and MLO10 within a non-canonical CaMBD. In GUS reporter assays, CML9 expresses in a high level in pollens, whereas MLO10 can be specifically detected in stigma which reaches up to a peaking level before fertilization. Therefore, the spatio-temporal expression patterns of MLO10 and CML9 are required for the time-window of pollination. When we observed the pollen germination in vitro, two cml9 mutant alleles dramatically reduced germination rate by 15% compared to wild-type. Consistently, the elongation rate of pollen tubes in planta was obviously slow while manually pollinating cml9-1 pollens to mlo10-1 stigmas. Additionally, cml9-1 mlo10-1 double mutant alleles had relatively lower rate of seed setting. Taken together, protein interaction between MLO10 and CML9 is supposed to affect pollen tube elongation and further affect seed development.

20.
Nat Plants ; 6(7): 800-808, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32514144

RESUMEN

Root nodule symbiosis enables nitrogen fixation in legumes and, therefore, improves crop production for sustainable agriculture1,2. Environmental nitrate levels affect nodulation and nitrogen fixation, but the mechanisms by which legume plants modulate nitrate uptake to regulate nodule symbiosis remain unclear1. Here, we identify a member of the Medicago truncatula nitrate peptide family (NPF), NPF7.6, which is expressed specifically in the nodule vasculature. NPF7.6 localizes to the plasma membrane of nodule transfer cells (NTCs), where it functions as a high-affinity nitrate transporter. Transfer cells show characteristic wall ingrowths that enhance the capacity for membrane transport at the apoplasmic-symplasmic interface between the vasculature and surrounding tissues3. Importantly, knockout of NPF7.6 using CRISPR-Cas9 resulted in developmental defects of the nodule vasculature, with excessive expansion of NTC plasma membranes. npf7.6 nodules showed severely compromised nitrate responsiveness caused by an attenuated ability to transport nitrate. Moreover, npf7.6 nodules exhibited disturbed nitric oxide homeostasis and a notable decrease in nitrogenase activity. Our findings indicate that NPF7.6 has been co-opted into a regulatory role in nodulation, functioning in nitrate uptake through NTCs to fine-tune nodule symbiosis in response to fluctuating environmental nitrate status. These observations will inform efforts to optimize nitrogen fixation in legume crops.


Asunto(s)
Nitratos/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis , Proteínas de Transporte de Anión/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Medicago truncatula/metabolismo , Transportadores de Nitrato , Fijación del Nitrógeno , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...