Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 23(8): 1979-93, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24834503

RESUMEN

Pathogens, which have recently colonized a new host species or new populations of the same host, are interesting models for understanding how populations may evolve in response to novel environments. During its colonization of South America from Africa, Plasmodium falciparum, the main agent of malaria, has been exposed to new conditions in distinctive new human populations (Amerindian and populations of mixed origins) that likely exerted new selective pressures on the parasite's genome. Among the genes that might have experienced strong selective pressures in response to these environmental changes, the eba genes (erythrocyte-binding antigens genes), which are involved in the invasion of the human red blood cells, constitute good candidates. In this study, we analysed, in South America, the polymorphism of three eba genes (eba-140, eba-175, eba-181) and compared it to the polymorphism observed in African populations. The aim was to determine whether these genes faced selective pressures in South America distinct from what they experienced in Africa. Patterns of genetic variability of these genes were compared to the patterns observed at two housekeeping genes (adsl and serca) and 272 SNPs to separate adaptive effects from demographic effects. We show that, conversely to Africa, eba-140 seemed to be under stronger diversifying selection in South America than eba-175. In contrast, eba-181 did not show any sign of departure from neutrality. These changes in the patterns of selection on the eba genes could be the consequence of changes in the host immune response, the host receptor polymorphisms and/or the ability of the parasite to silence or express differentially its invasion proteins.


Asunto(s)
Antígenos de Protozoos/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Selección Genética , África , Proteínas Portadoras/genética , ADN Protozoario/genética , Eritrocitos/parasitología , Genética de Población , Humanos , Proteínas de la Membrana , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , América del Sur
2.
Proc Natl Acad Sci U S A ; 109(2): 511-6, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22203975

RESUMEN

The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence--archeological and genetic--suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade.


Asunto(s)
Demografía , Emigración e Inmigración , Variación Genética , Filogenia , Plasmodium falciparum/genética , Teorema de Bayes , Análisis por Conglomerados , Genética de Población , Humanos , Modelos Logísticos , Repeticiones de Microsatélite/genética , Modelos Genéticos , Filogeografía , Plasmodium falciparum/clasificación , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , América del Sur
3.
Infect Genet Evol ; 11(7): 1752-60, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21801854

RESUMEN

Trypanosoma cruzi, the agent of Chagas disease, is usually subdivided into six discrete typing units (DTUs), TcI to TcVI, among which TcI and TcV are most common in human infections in Bolivia. Multilocus microsatellite typing (MLMT) was selected to further explore the structure of the natural populations belonging to these DTUs. The analysis showed that microsatellite clustering does not fully match the six DTUs, but it is relevant for the within DTUs analyses. Population genetics analysis was conducted on 11 relevant subsamples of stocks from Bolivia and Peru, belonging to TcI (6) and TcV (5), defined by four criterions: DTU, vector species, geographic origin, and date of isolation. Most TcV strains presented the same multilocus genotype over all subsamples with the puzzling characteristic that five loci were heterozygous and the other five homozygous. In TcI, four clusters were defined according to the vector species. Most of them appeared in agreement with clonal propagation (stocks isolated from Triatoma infestans and Triatoma sordida), while a few highly homozygous stocks (e.g. those isolated from Rhodnius stali) suggested that scarce sex events can occur. The poor role played by spatio-temporal factors in describing the observed genetic diversity suggested that ecology, in particular as regard to host played a significant role. These results highlight the extreme heterogeneity of T. cruzi and suggest that further population genetics surveys will need to target the most possible precise spatio-temporal and ecological scales.


Asunto(s)
Enfermedad de Chagas/parasitología , Repeticiones de Microsatélite , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/genética , Animales , Bolivia/epidemiología , Enfermedad de Chagas/epidemiología , ADN Protozoario/genética , Variación Genética , Genética de Población , Genotipo , Humanos , Epidemiología Molecular , Perú/epidemiología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA