Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
2.
Mol Ecol Resour ; 23(6): 1288-1298, 2023 Aug.
Article En | MEDLINE | ID: mdl-37002710

Environmental integrons are ubiquitous in natural microbial communities, but they are mostly uncharacterized and their role remains elusive. Thus far, research has been hindered by methodological limitations. Here, we successfully used an innovative approach combining CRISPR-Cas9 enrichment with long-read nanopore sequencing to target, in a complex microbial community, a putative adaptive environmental integron, InOPS, and to unravel its complete structure and genetic context. A contig of 20 kb was recovered containing the complete integron from the microbial metagenome of oil-contaminated coastal sediments. InOPS exhibited typical integron features. The integrase, closely related to integrases of marine Desulfobacterota, possessed all the elements of a functional integron integrase. The gene cassettes harboured mostly unknown functions hampering inferences about their ecological importance. Moreover, the putative InOPS host, likely a hydrocarbonoclastic marine bacteria, raises questions as to the adaptive potential of InOPS in response to oil contamination. Finally, several mobile genetic elements were intertwined with InOPS highlighting likely genomic plasticity, and providing a source of genetic novelty. This case study showed the power of CRISPR-Cas9 enrichment to elucidate the structure and context of specific DNA regions for which only a short sequence is known. This method is a new tool for environmental microbiologists working with complex microbial communities to target low abundant, large or repetitive genetic structures that are difficult to obtain by classical metagenomics. More precisely, here, it offers new perspectives to comprehensively assess the eco-evolutionary significance of environmental integrons.


Les intégrons environnementaux sont omniprésents dans les communautés microbiennes naturelles, mais la plupart ne sont pas caractérisés et leur rôle reste obscur. A ce jour, les limitations méthodologiques ont restreint leur étude. Ici, nous avons utilisé avec succès une approche innovante, combinant l'enrichissement par CRISPR-Cas9 et le séquençage nanopore longs-fragments, pour cibler, dans une communauté microbienne complexe, un intégron environnemental potentiellement adaptatif, InOPS, et pour révéler sa structure complète et son contexte génétique. Un contig de 20 kb contenant l'intégron complet a été obtenu à partir du métagénome microbien de sédiments côtiers contaminés par du pétrole. InOPS présente les caractéristiques typiques d'un intégron. Son intégrase, proche des intégrases des Desulfobacterota marines, possède tous les éléments d'une intégrase d'intégron fonctionnelle. Les cassettes de gène ont des fonctions pour la plupart inconnues, ce qui empêche d'inférer leur importance écologique. De plus, l'hôte présumé d'InOPS, probablement une bactérie marine hydrocarbonoclaste, interroge sur le potentiel adaptatif d'InOPS en réponse à la contamination par le pétrole. En outre, la présence de plusieurs éléments génétiques mobiles dans le contig met en évidence une probable plasticité génomique qui pourrait être source de remaniements génétiques. Cette étude de cas a montré la puissance de l'enrichissement par CRISPR-Cas9 pour élucider la structure et le contexte de régions d'ADN spécifiques pour lesquelles seule une courte séquence est connue. Cette méthode fournit un nouvel outil aux microbiologistes environnementaux travaillant avec des communautés microbiennes complexes pour cibler des structures génétiques peu abondantes, larges ou répétées, qui sont difficiles à obtenir par métagénomique classique. Plus précisément, elle offre ici de nouvelles perspectives pour évaluer de manière exhaustive l'importance éco-évolutive des intégrons environnementaux.


Integrons , Metagenomics , Integrons/genetics , CRISPR-Cas Systems , Bacteria/genetics , Integrases/genetics
3.
Cell Genom ; 2(6): 100139, 2022 Jun 08.
Article En | MEDLINE | ID: mdl-36778136

Accurate detection of somatic structural variation (SV) in cancer genomes remains a challenging problem. This is in part due to the lack of high-quality, gold-standard datasets that enable the benchmarking of experimental approaches and bioinformatic analysis pipelines. Here, we performed somatic SV analysis of the paired melanoma and normal lymphoblastoid COLO829 cell lines using four different sequencing technologies. Based on the evidence from multiple technologies combined with extensive experimental validation, we compiled a comprehensive set of carefully curated and validated somatic SVs, comprising all SV types. We demonstrate the utility of this resource by determining the SV detection performance as a function of tumor purity and sequence depth, highlighting the importance of assessing these parameters in cancer genomics projects. The truth somatic SV dataset as well as the underlying raw multi-platform sequencing data are freely available and are an important resource for community somatic benchmarking efforts.

4.
NPJ Genom Med ; 6(1): 106, 2021 Dec 09.
Article En | MEDLINE | ID: mdl-34887408

Levels of circulating tumor DNA (ctDNA) in liquid biopsies may serve as a sensitive biomarker for real-time, minimally-invasive tumor diagnostics and monitoring. However, detecting ctDNA is challenging, as much fewer than 5% of the cell-free DNA in the blood typically originates from the tumor. To detect lowly abundant ctDNA molecules based on somatic variants, extremely sensitive sequencing methods are required. Here, we describe a new technique, CyclomicsSeq, which is based on Oxford Nanopore sequencing of concatenated copies of a single DNA molecule. Consensus calling of the DNA copies increased the base-calling accuracy ~60×, enabling accurate detection of TP53 mutations at frequencies down to 0.02%. We demonstrate that a TP53-specific CyclomicsSeq assay can be successfully used to monitor tumor burden during treatment for head-and-neck cancer patients. CyclomicsSeq can be applied to any genomic locus and offers an accurate diagnostic liquid biopsy approach that can be implemented in clinical workflows.

5.
Genome Med ; 13(1): 86, 2021 05 18.
Article En | MEDLINE | ID: mdl-34006333

Here, we describe a novel approach for rapid discovery of a set of tumor-specific genomic structural variants (SVs), based on a combination of low coverage cancer genome sequencing using Oxford Nanopore with an SV calling and filtering pipeline. We applied the method to tumor samples of high-grade ovarian and prostate cancer patients and validated on average ten somatic SVs per patient with breakpoint-spanning PCR mini-amplicons. These SVs could be quantified in ctDNA samples of patients with metastatic prostate cancer using a digital PCR assay. The results suggest that SV dynamics correlate with and may improve existing treatment-response biomarkers such as PSA. https://github.com/UMCUGenetics/SHARC .


Biomarkers, Tumor , Circulating Tumor DNA , Genomic Structural Variation , Molecular Diagnostic Techniques , Nanopore Sequencing , Neoplasms/diagnosis , Neoplasms/genetics , Computational Biology/methods , Female , Humans , Liquid Biopsy/methods , Male , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Organ Specificity/genetics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity , Sequence Analysis, DNA
6.
Blood ; 138(2): 160-177, 2021 07 15.
Article En | MEDLINE | ID: mdl-33831168

Transcriptional deregulation is a central event in the development of acute myeloid leukemia (AML). To identify potential disturbances in gene regulation, we conducted an unbiased screen of allele-specific expression (ASE) in 209 AML cases. The gene encoding GATA binding protein 2 (GATA2) displayed ASE more often than any other myeloid- or cancer-related gene. GATA2 ASE was strongly associated with CEBPA double mutations (DMs), with 95% of cases presenting GATA2 ASE. In CEBPA DM AML with GATA2 mutations, the mutated allele was preferentially expressed. We found that GATA2 ASE was a somatic event lost in complete remission, supporting the notion that it plays a role in CEBPA DM AML. Acquisition of GATA2 ASE involved silencing of 1 allele via promoter methylation and concurrent overactivation of the other allele, thereby preserving expression levels. Notably, promoter methylation was also lost in remission along with GATA2 ASE. In summary, we propose that GATA2 ASE is acquired by epigenetic mechanisms and is a prerequisite for the development of AML with CEBPA DMs. This finding constitutes a novel example of an epigenetic hit cooperating with a genetic hit in the pathogenesis of AML.


Alleles , CCAAT-Enhancer-Binding Proteins/genetics , Epigenesis, Genetic , GATA2 Transcription Factor/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , DNA Methylation/genetics , Enhancer Elements, Genetic/genetics , Female , Humans , Male , Middle Aged , Promoter Regions, Genetic/genetics , Remission Induction , Young Adult
7.
Nat Commun ; 11(1): 2861, 2020 06 05.
Article En | MEDLINE | ID: mdl-32504042

Fusion genes are hallmarks of various cancer types and important determinants for diagnosis, prognosis and treatment. Fusion gene partner choice and breakpoint-position promiscuity restricts diagnostic detection, even for known and recurrent configurations. Here, we develop FUDGE (FUsion Detection from Gene Enrichment) to accurately and impartially identify fusions. FUDGE couples target-selected and strand-specific CRISPR-Cas9 activity for fusion gene driver enrichment - without prior knowledge of fusion partner or breakpoint-location - to long read nanopore sequencing with the bioinformatics pipeline NanoFG. FUDGE has flexible target-loci choices and enables multiplexed enrichment for simultaneous analysis of several genes in multiple samples in one sequencing run. We observe on-average 665 fold breakpoint-site enrichment and identify nucleotide resolution fusion breakpoints within 2 days. The assay identifies cancer cell line and tumor sample fusions irrespective of partner gene or breakpoint-position. FUDGE is a rapid and versatile fusion detection assay for diagnostic pan-cancer fusion detection.


CRISPR-Cas Systems/genetics , Gene Fusion , Genetic Testing/methods , Nanopore Sequencing , Neoplasms/diagnosis , Cell Line, Tumor , High-Throughput Nucleotide Sequencing , Humans , Male , Neoplasms/genetics , Sequence Analysis, DNA
8.
Nat Protoc ; 15(2): 364-397, 2020 02.
Article En | MEDLINE | ID: mdl-31932773

We present the experimental protocol and data analysis toolbox for multi-contact 4C (MC-4C), a new proximity ligation method tailored to study the higher-order chromatin contact patterns of selected genomic sites. Conventional chromatin conformation capture (3C) methods fragment proximity ligation products for efficient analysis of pairwise DNA contacts. By contrast, MC-4C is designed to preserve and collect large concatemers of proximity ligated fragments for long-molecule sequencing on an Oxford Nanopore or Pacific Biosciences platform. Each concatemer of proximity ligation products represents a snapshot topology of a different individual allele, revealing its multi-way chromatin interactions. By inverse PCR with primers specific for a fragment of interest (the viewpoint) and DNA size selection, sequencing is selectively targeted to thousands of different complex interactions containing this viewpoint. A tailored statistical analysis toolbox is able to generate background models and three-way interaction profiles from the same dataset. These profiles can be used to distinguish whether contacts between more than two regulatory sequences are mutually exclusive or, conversely, simultaneously occurring at chromatin hubs. The entire procedure can be completed in 2 w, and requires standard molecular biology and data analysis skills and equipment, plus access to a third-generation sequencing platform.


Chromatin/chemistry , Chromatin/genetics , Sequence Analysis, DNA/methods , Humans , K562 Cells , Molecular Conformation
9.
Elife ; 82019 11 28.
Article En | MEDLINE | ID: mdl-31778112

Cancer cells often harbor chromosomes in abnormal numbers and with aberrant structure. The consequences of these chromosomal aberrations are difficult to study in cancer, and therefore several model systems have been developed in recent years. We show that human cells with extra chromosome engineered via microcell-mediated chromosome transfer often gain massive chromosomal rearrangements. The rearrangements arose by chromosome shattering and rejoining as well as by replication-dependent mechanisms. We show that the isolated micronuclei lack functional lamin B1 and become prone to envelope rupture, which leads to DNA damage and aberrant replication. The presence of functional lamin B1 partly correlates with micronuclei size, suggesting that the proper assembly of nuclear envelope might be sensitive to membrane curvature. The chromosomal rearrangements in trisomic cells provide growth advantage compared to cells without rearrangements. Our model system enables to study mechanisms of massive chromosomal rearrangements of any chromosome and their consequences in human cells.


Chromothripsis , Genomic Instability , Animals , Cell Line , Cell Nucleus/chemistry , DNA Damage , DNA Replication , Humans , Lamin Type B/analysis , Mice , Micronuclei, Chromosome-Defective
10.
Nat Genet ; 50(8): 1151-1160, 2018 08.
Article En | MEDLINE | ID: mdl-29988121

Chromatin folding contributes to the regulation of genomic processes such as gene activity. Existing conformation capture methods characterize genome topology through analysis of pairwise chromatin contacts in populations of cells but cannot discern whether individual interactions occur simultaneously or competitively. Here we present multi-contact 4C (MC-4C), which applies Nanopore sequencing to study multi-way DNA conformations of individual alleles. MC-4C distinguishes cooperative from random and competing interactions and identifies previously missed structures in subpopulations of cells. We show that individual elements of the ß-globin superenhancer can aggregate into an enhancer hub that can simultaneously accommodate two genes. Neighboring chromatin domain loops can form rosette-like structures through collision of their CTCF-bound anchors, as seen most prominently in cells lacking the cohesin-unloading factor WAPL. Here, massive collision of CTCF-anchored chromatin loops is believed to reflect 'cohesin traffic jams'. Single-allele topology studies thus help us understand the mechanisms underlying genome folding and functioning.


Chromatin/genetics , Enhancer Elements, Genetic/genetics , Alleles , Animals , CCCTC-Binding Factor/genetics , Mice , Nucleic Acid Conformation , Regulatory Sequences, Nucleic Acid/genetics , beta-Globins/genetics
11.
Nat Commun ; 8(1): 1326, 2017 11 06.
Article En | MEDLINE | ID: mdl-29109544

Despite improvements in genomics technology, the detection of structural variants (SVs) from short-read sequencing still poses challenges, particularly for complex variation. Here we analyse the genomes of two patients with congenital abnormalities using the MinION nanopore sequencer and a novel computational pipeline-NanoSV. We demonstrate that nanopore long reads are superior to short reads with regard to detection of de novo chromothripsis rearrangements. The long reads also enable efficient phasing of genetic variations, which we leveraged to determine the parental origin of all de novo chromothripsis breakpoints and to resolve the structure of these complex rearrangements. Additionally, genome-wide surveillance of inherited SVs reveals novel variants, missed in short-read data sets, a large proportion of which are retrotransposon insertions. We provide a first exploration of patient genome sequencing with a nanopore sequencer and demonstrate the value of long-read sequencing in mapping and phasing of SVs for both clinical and research applications.


Chromosome Mapping/methods , Chromothripsis , DNA Mutational Analysis/methods , Nanopores , Abnormalities, Multiple/genetics , Algorithms , Chromosome Mapping/statistics & numerical data , Computational Biology , DNA Mutational Analysis/statistics & numerical data , Gene Rearrangement , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans
12.
Nat Commun ; 7: 12989, 2016 10 06.
Article En | MEDLINE | ID: mdl-27708267

Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.9 million genome variants across 9 different variant classes, including novel forms of complex indels, and retrotransposition-mediated insertions of mobile elements and processed RNAs. A large proportion are previously under reported variants sized between 21 and 100 bp. We detect 4 megabases of novel sequence, encoding 11 new transcripts. Finally, we show 191 known, trait-associated SNPs to be in strong linkage disequilibrium with SVs and demonstrate that our panel facilitates accurate imputation of SVs in unrelated individuals.


Genome, Human , Genomic Structural Variation , Genomics , Algorithms , Chromosomes/ultrastructure , Computational Biology , Gene Deletion , Genotype , Haplotypes , Humans , INDEL Mutation , Linkage Disequilibrium , Netherlands , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , RNA/metabolism , Sequence Analysis, DNA , Sequence Analysis, RNA , Software
13.
J Clin Invest ; 126(8): 2881-92, 2016 08 01.
Article En | MEDLINE | ID: mdl-27427983

The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood.


Abnormalities, Multiple/genetics , Cell Cycle Proteins/genetics , Chromosome Breakage , Intracellular Signaling Peptides and Proteins/genetics , Lung Diseases/genetics , Alleles , B-Lymphocytes/cytology , Cell Proliferation , Child , Child, Preschool , Chromosomal Proteins, Non-Histone , Chromosome Segregation , Chromosomes/ultrastructure , DNA Damage , DNA Repair , DNA Replication , Family Health , Female , Fibroblasts/metabolism , Homozygote , Humans , Infant , Male , Meiosis , Mitosis , Mutation, Missense , Pedigree , Recombination, Genetic , Syndrome , T-Lymphocytes/cytology
14.
Nat Genet ; 47(7): 822-826, 2015 Jul.
Article En | MEDLINE | ID: mdl-25985141

Mutations create variation in the population, fuel evolution and cause genetic diseases. Current knowledge about de novo mutations is incomplete and mostly indirect. Here we analyze 11,020 de novo mutations from the whole genomes of 250 families. We show that de novo mutations in the offspring of older fathers are not only more numerous but also occur more frequently in early-replicating, genic regions. Functional regions exhibit higher mutation rates due to CpG dinucleotides and show signatures of transcription-coupled repair, whereas mutation clusters with a unique signature point to a new mutational mechanism. Mutation and recombination rates independently associate with nucleotide diversity, and regional variation in human-chimpanzee divergence is only partly explained by heterogeneity in mutation rate. Finally, we provide a genome-wide mutation rate map for medical and population genetics applications. Our results provide new insights and refine long-standing hypotheses about human mutagenesis.


Germ-Line Mutation , Animals , Evolution, Molecular , Female , Genome, Human , Humans , Male , Models, Genetic , Mutation Rate , Pan troglodytes/genetics , Paternal Age
15.
Genome Res ; 25(6): 792-801, 2015 Jun.
Article En | MEDLINE | ID: mdl-25883321

Small insertions and deletions (indels) and large structural variations (SVs) are major contributors to human genetic diversity and disease. However, mutation rates and characteristics of de novo indels and SVs in the general population have remained largely unexplored. We report 332 validated de novo structural changes identified in whole genomes of 250 families, including complex indels, retrotransposon insertions, and interchromosomal events. These data indicate a mutation rate of 2.94 indels (1-20 bp) and 0.16 SVs (>20 bp) per generation. De novo structural changes affect on average 4.1 kbp of genomic sequence and 29 coding bases per generation, which is 91 and 52 times more nucleotides than de novo substitutions, respectively. This contrasts with the equal genomic footprint of inherited SVs and substitutions. An excess of structural changes originated on paternal haplotypes. Additionally, we observed a nonuniform distribution of de novo SVs across offspring. These results reveal the importance of different mutational mechanisms to changes in human genome structure across generations.


Genetic Variation , Genome, Human , Alleles , Amino Acid Sequence , Female , Genomics , Haplotypes , Humans , INDEL Mutation , Male , Molecular Sequence Data , Mutation Rate , Polymorphism, Single Nucleotide , Retroelements/genetics , Sequence Alignment , Sequence Analysis, DNA
16.
Am J Hum Genet ; 96(4): 651-6, 2015 Apr 02.
Article En | MEDLINE | ID: mdl-25799107

Chromothripsis represents an extreme class of complex chromosome rearrangements (CCRs) with major effects on chromosomal architecture. Although recent studies have associated chromothripsis with congenital abnormalities, the incidence and pathogenic effects of this phenomenon require further investigation. Here, we analyzed the genomes of three families in which chromothripsis rearrangements were transmitted from a mother to her child. The chromothripsis in the mothers resulted in completely balanced rearrangements involving 8-23 breakpoint junctions across three to five chromosomes. Two mothers did not show any phenotypic abnormalities, although 3-13 protein-coding genes were affected by breakpoints. Unbalanced but stable transmission of a subset of the derivative chromosomes caused apparently de novo complex copy-number changes in two children. This resulted in gene-dosage changes, which are probably responsible for the severe congenital phenotypes of these two children. In contrast, the third child, who has a severe congenital disease, harbored all three chromothripsis chromosomes from his healthy mother, but one of the chromosomes acquired de novo rearrangements leading to copy-number changes. These results show that the human genome can tolerate extreme reshuffling of chromosomal architecture, including breakage of multiple protein-coding genes, without noticeable phenotypic effects. The presence of chromothripsis in healthy individuals affects reproduction and is expected to substantially increase the risk of miscarriages, abortions, and severe congenital disease.


Congenital Abnormalities/genetics , Inheritance Patterns/genetics , Open Reading Frames/genetics , Phenotype , Translocation, Genetic/genetics , DNA Copy Number Variations/genetics , Humans , Microarray Analysis
17.
Cell Rep ; 9(6): 2001-10, 2014 Dec 24.
Article En | MEDLINE | ID: mdl-25497101

Genomic rearrangements are a common cause of human congenital abnormalities. However, their origin and consequences are poorly understood. We performed molecular analysis of two patients with congenital disease who carried de novo genomic rearrangements. We found that the rearrangements in both patients hit genes that are recurrently rearranged in cancer (ETV1, FOXP1, and microRNA cluster C19MC) and drive formation of fusion genes similar to those described in cancer. Subsequent analysis of a large set of 552 de novo germline genomic rearrangements underlying congenital disorders revealed enrichment for genes rearranged in cancer and overlap with somatic cancer breakpoints. Breakpoints of common (inherited) germline structural variations also overlap with cancer breakpoints but are depleted for cancer genes. We propose that the same genomic positions are prone to genomic rearrangements in germline and soma but that timing and context of breakage determines whether developmental defects or cancer are promoted.


Chromosome Aberrations , Chromosomes, Human/genetics , Congenital Abnormalities/genetics , Gene Rearrangement , Genome, Human , Germ-Line Mutation , Animals , Chromosome Breakpoints , DNA-Binding Proteins/genetics , Forkhead Transcription Factors/genetics , HEK293 Cells , Humans , MicroRNAs/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Zebrafish
18.
Genome Res ; 24(2): 200-11, 2014 Feb.
Article En | MEDLINE | ID: mdl-24221193

Intra-tumor heterogeneity is a hallmark of many cancers and may lead to therapy resistance or interfere with personalized treatment strategies. Here, we combined topographic mapping of somatic breakpoints and transcriptional profiling to probe intra-tumor heterogeneity of treatment-naïve stage IIIC/IV epithelial ovarian cancer. We observed that most substantial differences in genomic rearrangement landscapes occurred between metastases in the omentum and peritoneum versus tumor sites in the ovaries. Several cancer genes such as NF1, CDKN2A, and FANCD2 were affected by lesion-specific breakpoints. Furthermore, the intra-tumor variability involved different mutational hallmarks including lesion-specific kataegis (local mutation shower coinciding with genomic breakpoints), rearrangement classes, and coding mutations. In one extreme case, we identified two independent TP53 mutations in ovary tumors and omentum/peritoneum metastases, respectively. Examination of gene expression dynamics revealed up-regulation of key cancer pathways including WNT, integrin, chemokine, and Hedgehog signaling in only subsets of tumor samples from the same patient. Finally, we took advantage of the multilevel tumor analysis to understand the effects of genomic breakpoints on qualitative and quantitative gene expression changes. We show that intra-tumor gene expression differences are caused by site-specific genomic alterations, including formation of in-frame fusion genes. These data highlight the plasticity of ovarian cancer genomes, which may contribute to their strong capacity to adapt to changing environmental conditions and give rise to the high rate of recurrent disease following standard treatment regimes.


Chromosome Aberrations , Gene Expression Regulation, Neoplastic , Genome, Human , Ovarian Neoplasms/genetics , Aged , Cyclin-Dependent Kinase Inhibitor p16/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Female , Gene Expression Profiling , Humans , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Neurofibromatosis 1/genetics , Omentum/metabolism , Omentum/pathology , Oncogene Proteins, Fusion/genetics , Ovarian Neoplasms/pathology , Peritoneum/metabolism , Peritoneum/pathology , Tumor Suppressor Protein p53/genetics
19.
J Med Genet ; 49(8): 539-43, 2012 Aug.
Article En | MEDLINE | ID: mdl-22889856

BACKGROUND: We present a large Dutch family with seven males affected by a novel syndrome of X-linked intellectual disability, hypogonadism, gynaecomastia, truncal obesity, short stature and recognisable craniofacial manifestations resembling but not identical to Wilson-Turner syndrome. Seven female relatives show a much milder expression of the phenotype. METHODS AND RESULTS: We performed X chromosome exome (X-exome) sequencing in five individuals from this family and identified a novel intronic variant in the histone deacetylase 8 gene (HDAC8), c.164+5G>A, which disturbs the normal splicing of exon 2 resulting in exon skipping, and introduces a premature stop at the beginning of the histone deacetylase catalytic domain. The identified variant completely segregates in this family and was absent in 96 Dutch controls and available databases. Affected female carriers showed a notably skewed X-inactivation pattern in lymphocytes in which the mutated X-chromosome was completely inactivated. CONCLUSIONS: HDAC8 is a member of the protein family of histone deacetylases that play a major role in epigenetic gene silencing during development. HDAC8 specifically controls the patterning of the skull with the mouse HDAC8 knock-out showing craniofacial deformities of the skull. The present family provides the first evidence for involvement of HDAC8 in a syndromic form of intellectual disability.


Gynecomastia/genetics , Histone Deacetylases/genetics , Hypogonadism/genetics , Mental Retardation, X-Linked/genetics , Obesity, Abdominal/genetics , Repressor Proteins/genetics , Case-Control Studies , Chromosomes, Human, X/genetics , Craniofacial Abnormalities/genetics , DNA Mutational Analysis , Exome , Exons , Female , Genetic Loci , Genetic Testing/methods , Heterozygote , Humans , Introns , Male , Mental Retardation, X-Linked/pathology , Mutation , Netherlands , Pedigree , Phenotype , Syndrome , X Chromosome Inactivation
20.
Cell Rep ; 1(6): 648-55, 2012 Jun 28.
Article En | MEDLINE | ID: mdl-22813740

Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements.


Chromosomes, Human/genetics , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , Gene Rearrangement/genetics , Base Sequence , Chromosome Breakage , Chromosome Deletion , Chromosome Duplication/genetics , Cluster Analysis , DNA Replication/genetics , Genome, Human/genetics , Humans , Molecular Sequence Data
...