Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(42): 37782-37796, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36312363

RESUMEN

Oligonucleotides can be chemically modified for a variety of applications that include their use as biomaterials, in therapeutics, or as tools to understand biochemical processes, among others. This work focuses on the functionalization of oligonucleotides of RNA and DNA (12- or 14-nucleotides long) with methylbenzothiophene (BT), at the C2'-O-position, which led to unique structural features. Circular dichroism (CD) analyses showed that positioning the BT units on one strand led to significant thermal destabilization, while duplexes where each strand contained 4-BT rings formed a distinct arrangement with cooperativity/interactions among the modifications (evidenced from the appearance of a band with positive ellipticity at 235 nm). Interestingly, the structural arrays displayed increased duplex stabilization (>10 °C higher than the canonical analogue) as a function of [Na+] with an unexpected structural rearrangement at temperatures above 50 °C. Density functional theory-polarizable continuum model (DFT-PCM) calculations were carried out, and the analyses were in agreement with induced structural changes as a function of salt content. A model was proposed where the hydrophobic surface allows for an internal nucleobase rearrangement into a more thermodynamically stable structure, before undergoing full denaturation, with increased heat. While this behavior is not common, B- to Z-form duplex transitions can occur and are dependent on parameters that were probed in this work, i.e., temperature, nature of modification, or ionic content. To take advantage of this phenomenon, we probed the ability of the modified duplexes to be recognized by Zα (an RNA binding protein that targets Z-form RNA) via electrophoretic analysis and CD. Interestingly, the protein did not bind to canonical duplexes of DNA or RNA; however, it recognized the modified duplexes, in a [monovalent/divalent salt] dependent manner. Overall, the findings describe methodology to attain unique structural motifs of modified duplexes of DNA or RNA, and control their behavior as a function of salt concentration. While their affinity to RNA binding proteins, and the corresponding mechanism of action, requires further exploration, the tunable properties can be of potential use to study this, and other, types of modifications. The novel arrays that formed, under the conditions described herein, provide a useful way to explore the structure and behavior of modified oligonucleotides, in general.

2.
J Vis Exp ; (182)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35467656

RESUMEN

RNA is a biopolymer present in all domains of life, and its interactions with other molecules and/or reactive species, e.g., DNA, proteins, ions, drugs, and free radicals, are ubiquitous. As a result, RNA undergoes various reactions that include its cleavage, degradation, or modification, leading to biologically relevant species with distinct functions and implications. One example is the oxidation of guanine to 7,8-dihydro-8-oxoguanine (8-oxoG), which may occur in the presence of reactive oxygen species (ROS). Overall, procedures that characterize such products and transformations are largely valuable to the scientific community. To this end, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry is a widely used method. The present protocol describes how to characterize RNA fragments formed after enzymatic treatment. The chosen model uses a reaction between RNA and the exoribonuclease Xrn-1, where enzymatic digestion is halted at oxidized sites. Two 20-nucleotide long RNA sequences [5'-CAU GAA ACA A(8-oxoG)G CUA AAA GU] and [5'-CAU GAA ACA A(8-oxoG)(8-oxoG) CUA AAA GU] were obtained via solid-phase synthesis, quantified by UV-vis spectroscopy, and characterized via MALDI-TOF. The obtained strands were then (1) 5'-phosphorylated and characterized via MALDI-TOF; (2) treated with Xrn-1; (3) filtered and desalted; (4) analyzed via MALDI-TOF. This experimental setup led to the unequivocal identification of the fragments associated with the stalling of Xrn-1: [5'-H2PO4-(8-oxoG)G CUA AAA GU], [5'-H2PO4-(8-oxoG)(8-oxoG) CUA AAA GU], and [5'-H2PO4-(8-oxoG) CUA AAA GU]. The described experiments were carried out with 200 picomols of RNA (20 pmol used for MALDI analyses); however, lower amounts may result in detectable peaks with spectrometers using laser sources with more power than the one used in this work. Importantly, the described methodology can be generalized and potentially extended to product identification for other processes involving RNA and DNA, and may aid in the characterization/elucidation of other biochemical pathways.


Asunto(s)
ADN , ARN , Secuencia de Bases , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
4.
Front Mol Biosci ; 8: 780315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869601

RESUMEN

Understanding how oxidatively damaged RNA is handled intracellularly is of relevance due to the link between oxidized RNA and the progression/development of some diseases as well as aging. Among the ribonucleases responsible for the decay of modified (chemically or naturally) RNA is the exonuclease Xrn-1, a processive enzyme that catalyzes the hydrolysis of 5'-phosphorylated RNA in a 5'→3' direction. We set out to explore the reactivity of this exonuclease towards oligonucleotides (ONs, 20-nt to 30-nt long) of RNA containing 8-oxo-7,8-dihydroguanosine (8-oxoG), obtained via solid-phase synthesis. The results show that Xrn-1 stalled at sites containing 8-oxoG, evidenced by the presence of a slower moving band (via electrophoretic analyses) than that observed for the canonical analogue. The observed fragment(s) were characterized via PAGE and MALDI-TOF to confirm that the oligonucleotide fragment(s) contained a 5'-phosphorylated 8-oxoG. Furthermore, the yields for this stalling varied from app. 5-30% with 8-oxoG located at different positions and in different sequences. To gain a better understanding of the decreased nuclease efficiency, we probed: 1) H-bonding and spatial constraints; 2) anti-syn conformational changes; 3) concentration of divalent cation; and 4) secondary structure. This was carried out by introducing methylated or brominated purines (m1G, m6,6A, or 8-BrG), probing varying [Mg2+], and using circular dichroism (CD) to explore the formation of structured RNA. It was determined that spatial constraints imposed by conformational changes around the glycosidic bond may be partially responsible for stalling, however, the results do not fully explain some of the observed higher stalling yields. We hypothesize that altered π-π stacking along with induced H-bonding interactions between 8-oxoG and residues within the binding site may also play a role in the decreased Xrn-1 efficiency. Overall, these observations suggest that other factors, yet to be discovered/established, are likely to contribute to the decay of oxidized RNA. In addition, Xrn-1 degraded RNA containing m1G, and stalled mildly at sites where it encountered m6,6A, or 8-BrG, which is of particular interest given that the former two are naturally occurring modifications.

5.
Biopolymers ; 111(12): e23410, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33216981

RESUMEN

Inosine is an important RNA modification, furthermore RNA oxidation has gained interest due, in part, to its potential role in the development/progression of disease as well as on its impact on RNA structure and function. In this report we established the base pairing abilities of purine nucleobases G, I, A, as well as their corresponding, 8-oxo-7,8-dihydropurine (common products of oxidation at the C8-position of purines), and 8-bromopurine (as probes to explore conformational changes), derivatives, namely 8-oxoG, 8-oxoI, 8-oxoA, 8-BrG, and 8-BrI. Dodecamers of RNA were obtained using standard phosphoramidite chemistry via solid-phase synthesis, and used as models to establish the impact that each of these nucleobases have on the thermal stability of duplexes, when base pairing to canonical and noncanonical nucleobases. Thermal stabilities were obtained from thermal denaturation transition (Tm ) measurements, via circular dichroism (CD). The results were then rationalized using models of base pairs between two monomers, via density functional theory (DFT), that allowed us to better understand potential contributions from H-bonding patterns arising from distinct conformations. Overall, some of the important results indicate that: (a) an anti-I:syn-A base pair provides thermal stability, due to the absence of the exocyclic amine; (b) 8-oxoG base pairs like U, and does not induce destabilization within the duplex when compared to the pyrimidine ring; (c) a U:G wobble-pair is only stabilized by G; and (d) 8-oxoA displays an inherited base pairing promiscuity in this sequence context. Gaining a better understanding of how this oxidatively generated lesions potentially base pair with other nucleobases will be useful to predict various biological outcomes, as well as in the design of biomaterials and/or nucleotide derivatives with biological potential.


Asunto(s)
Adenosina/química , Guanosina/química , Inosina/química , ARN/química , Adenosina/genética , Emparejamiento Base , Guanina/análogos & derivados , Guanina/química , Guanosina/genética , Enlace de Hidrógeno , Inosina/genética , Modelos Químicos , Modelos Genéticos , Estructura Molecular , Conformación de Ácido Nucleico , ARN/genética , Termodinámica
6.
PLoS One ; 15(8): e0235102, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32857764

RESUMEN

Inosine is ubiquitous and essential in many biological processes, including RNA-editing. In addition, oxidative stress on RNA has been a topic of increasing interest due, in part, to its potential role in the development/progression of disease. In this work we probed the ability of three reverse transcriptases (RTs) to catalyze the synthesis of cDNA in the presence of RNA templates containing inosine (I), 8-oxo-7,8-dihydroinosine (8oxo-I), guanosine (G), or 8-oxo-7,8-dihydroguanosine (8-oxoG), and explored the impact that these purine derivatives have as a function of position. To this end, we used 29-mers of RNA (as template) containing the modifications at position-18 and reverse transcribed DNA using 17-mers, 18-mers, or 19-mers (as primers). Generally reactivity of the viral RTs, AMV / HIV / MMLV, towards cDNA synthesis was similar for templates containing G or I as well as for those with 8-oxoG or 8-oxoI. Notable differences are: 1) the use of 18-mers of DNA (to explore cDNA synthesis past the lesion/modification) led to inhibition of DNA elongation in cases where a G:dA wobble pair was present, while the presence of I, 8-oxoI, or 8-oxoG led to full synthesis of the corresponding cDNA, with the latter two displaying a more efficient process; 2) HIV RT is more sensitive to modified base pairs in the vicinity of cDNA synthesis; and 3) the presence of a modification two positions away from transcription initiation has an adverse impact on the overall process. Steady-state kinetics were established using AMV RT to determine substrate specificities towards canonical dNTPs (N = G, C, T, A). Overall we found evidence that RNA templates containing inosine are likely to incorporate dC > dT > > dA, where reactivity in the presence of dA was found to be pH dependent (process abolished at pH 7.3); and that the absence of the C2-exocyclic amine, as displayed with templates containing 8-oxoI, leads to increased selectivity towards incorporation of dA over dC. The data will be useful in assessing the impact that the presence of inosine and/or oxidatively generated lesions have on viral processes and adds to previous reports where I codes exclusively like G. Similar results were obtained upon comparison of AMV and MMLV RTs.


Asunto(s)
Virus de la Mieloblastosis Aviar/enzimología , Transcriptasa Inversa del VIH/metabolismo , Virus de la Leucemia Murina de Moloney/enzimología , ADN Polimerasa Dirigida por ARN/metabolismo , Animales , Secuencia de Bases , ADN Complementario/biosíntesis , ADN Complementario/química , ADN Complementario/genética , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Humanos , Técnicas In Vitro , Inosina/análogos & derivados , Inosina/química , Inosina/metabolismo , Cinética , Ratones , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Moldes Genéticos
7.
Chembiochem ; 21(9): 1347-1355, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-31845489

RESUMEN

Aptamers are attractive constructs due to their high affinity/selectivity towards a target. Here 7,8-dihydro-8-oxoguanosine (8-oxoG) has been used, due in part to its unique H-bonding capabilities (Watson-Crick or Hoogsteen), to expand the "RNA alphabet". Its impact on the theophylline RNA aptamer was explored by modifying its binding pocket at positions G11, G25, or G26. Structural probing, with RNases A and T1 , showed that modification at G11 leads to a drastic structural change, whereas the G25-/G26-modified analogues exhibited cleavage patterns similar to that of the canonical construct. The recognition properties towards three xanthine derivatives were then explored through thermophoresis. Modifying the aptamer at position G11 led to binding inhibition. Modification at G25, however, changed the selectivity towards theobromine (Kd ≈160 µm), with a poor affinity for theophylline (Kd >1.5 mm) being observed. Overall, 8-oxoG can have an impact on the structures of aptamers in a position-dependent manner, leading to altered target selectivity.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Guanosina/análogos & derivados , Teofilina/metabolismo , Aptámeros de Nucleótidos/química , Guanosina/química , Humanos , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , Teofilina/química
8.
J Org Chem ; 84(15): 9714-9725, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31298854

RESUMEN

The formation of cyclobutane rings is a promising strategy in the development of potential drugs and/or synthetic intermediates, typically challenging to obtain due to their constrained nature. In this work, the [2 + 2] photocycloaddition reaction of S,S-dioxobenzothiophene-2-methanol was explored in microcrystalline powders and its outcome was compared to that observed in solution. It was found that the molecular constraints inherited within the crystal lattice provide an optimal environment that leads to photodimer 4 as the major product in ca. 9.6:0.4 diastereomeric ratios with conversions >95%. The photoreaction was analyzed via X-ray, displaying a crystalline-to-amorphous transformation and showing that units of monomer 2 align to generate the corresponding dimer with a syn-head-to-tail regio- and diastereoselectivity. This result contrasted with that obtained in solution, where the diastereomeric ratio varied as a function of the excited state that is generated, to yield mixtures of dimers 4 and 5 (anti-head-to-tail), or exclusively 5 in the triplet-sensitized photoreaction, in the presence of benzophenone. Density functional theory was used to elucidate a plausible detailed mechanism for the phototransformation, which aided in justifying the results that led to the corresponding dimers. X-ray crystallography allowed us to establish the stereochemical assignment of the obtained cyclobutyl rings. Thus, the use of solid-state or solution photochemistry can be used to gain control of diastereo- and regioselectivities in the formation of this important moiety.

9.
Biochemistry ; 57(20): 2971-2983, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29683663

RESUMEN

Understanding how oxidatively damaged RNA interacts with ribonucleases is important because of its proposed role in the development and progression of disease. Thus, understanding structural aspects of RNA containing lesions generated under oxidative stress, as well as its interactions with other biopolymers, is fundamental. We explored the reactivity of RNase A, RNase T1, and RNase H toward oligonucleotides of RNA containing 8-oxo-7,8-dihydroguanosine (8oxoG). This is the first example that addresses this relationship and will be useful for understanding (1) how these RNases can be used to characterize the structural impact that this lesion has on RNA and (2) how oxidatively modified RNA may be handled intracellularly. 8-OxoG was incorporated into 10-16-mers of RNA, and its reactivity with each ribonuclease was assessed via electrophoretic analyses, circular dichroism, and the use of other C8-purine-modified analogues (8-bromoguanosine, 8-methoxyguanosine, and 8-oxoadenosine). RNase T1 does not recognize sites containing 8-oxoG, while RNase A recognizes and cleaves RNA at positions containing this lesion while differentiating if it is involved in H-bonding. The selectivity of RNase A followed the order C > 8-oxoG ≈ U. In addition, isothermal titration calorimetry showed that an 8-oxoG-C3'-methylphosphate derivative can inhibit RNase A activity. Cleavage patterns obtained from RNase H displayed changes in reactivity in a sequence- and concentration-dependent manner and displayed recognition at sites containing the modification in some cases. These data will aid in understanding how this modification affects reactivity with ribonucleases and will enable the characterization of global and local structural changes in oxidatively damaged RNA.


Asunto(s)
Oligonucleótidos/genética , Ribonucleasa H/genética , Ribonucleasa T1/genética , Ribonucleasa Pancreática/genética , Dicroismo Circular , Guanosina/análogos & derivados , Guanosina/química , Guanosina/genética , Humanos , Oligonucleótidos/química , Estrés Oxidativo/genética , ARN/química , ARN/genética , Ribonucleasa H/química , Ribonucleasa T1/química , Ribonucleasa Pancreática/química , Ribonucleasas/química , Ribonucleasas/genética , Especificidad por Sustrato
10.
J Vis Exp ; (125)2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28784951

RESUMEN

Solid-phase synthesis has been used to obtain canonical and modified polymers of nucleic acids, specifically of DNA or RNA, which has made it a popular methodology for applications in various fields and for different research purposes. The procedure described herein focuses on the synthesis, purification, and characterization of dodecamers of RNA 5'-[CUA CGG AAU CAU]-3' containing zero, one, or two modifications located at the C2'-O-position. The probes are based on 2-thiophenylmethyl groups, incorporated into RNA nucleotides via standard organic synthesis and introduced into the corresponding oligonucleotides via their respective phosphoramidites. This report makes use of phosphoramidite chemistry via the four canonical nucleobases (Uridine (U), Cytosine (C), Guanosine (G), Adenosine (A)), as well as 2-thiophenylmethyl functionalized nucleotides modified at the 2'-O-position; however, the methodology is amenable for a large variety of modifications that have been developed over the years. The oligonucleotides were synthesized on a controlled-pore glass (CPG) support followed by cleavage from the resin and deprotection under standard conditions, i.e., a mixture of ammonia and methylamine (AMA) followed by hydrogen fluoride/triethylamine/N-methylpyrrolidinone. The corresponding oligonucleotides were purified via polyacrylamide electrophoresis (20% denaturing) followed by elution, desalting, and isolation via reversed-phase chromatography (Sep-pak, C18-column). Quantification and structural parameters were assessed via ultraviolet-visible (UV-vis) and circular dichroism (CD) photometric analysis, respectively. This report aims to serve as a resource and guide for beginner and expert researchers interested in embarking in this field. It is expected to serve as a work-in-progress as new technologies and methodologies are developed. The description of the methodologies and techniques within this document correspond to a DNA/RNA synthesizer (refurbished and purchased in 2013) that uses phosphoramidite chemistry.


Asunto(s)
Dicroismo Circular , Oligodesoxirribonucleótidos/síntesis química , ARN/química , Tiofenos/metabolismo , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos/química , Compuestos Organofosforados/química , Técnicas de Síntesis en Fase Sólida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura de Transición , Grabación en Video
11.
Nucleic Acids Res ; 45(4): 2099-2111, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28426093

RESUMEN

8-10: A better understanding of the effects that oxidative lesions have on RNA is of importance to understand their role in the development/progression of disease. 8-oxo-7,8-dihydroguanine was incorporated into RNA to understand its structural and functional impact on RNA:RNA and RNA:DNA duplexes, hairpins and pseudoknots. One to three modifications were incorporated into dodecamers of RNA [AAGA GGG AUGAC] resulting in thermal destabilization (Δ T m - 10°C per lesion). Hairpins with tetraloops c-UUCG*-g* ( ), a-ACCG-g* ( ), c-UUG*G*-g* ( ) and c-ACG*G*-g* ( ) were modified and used to determine thermal stabilities, concluding that: (i) modifying the stem leads to destabilization unless adenosine is the opposing basepair of 8-oxoGua; (ii) modification at the loop is position- and sequence-dependent and varies from slight stabilization to large destabilization, in some cases leading to formation of other secondary structures (hairpin→duplex). Functional effects were established using the aptamer for preQ 1 as model. Modification at G5 disrupted the stem P1 and inhibited recognition of the target molecule 7-methylamino-7-deazaguanine (preQ 1 ). Modifying G11 results in increased thermal stability, albeit with a K d 4-fold larger than its canonical analog. These studies show the capability of 8-oxoG to affect structure and function of RNA, resulting in distinct outcomes as a function of number and position of the lesion.


Asunto(s)
Guanina/análogos & derivados , Conformación de Ácido Nucleico , Oligorribonucleótidos/química , Oligorribonucleótidos/metabolismo , Aptámeros de Nucleótidos , ADN/química , ADN/metabolismo , Guanina/química , Guanina/metabolismo , Secuencias Invertidas Repetidas , Espectroscopía de Resonancia Magnética , Pirimidinonas , Pirroles
12.
Chemistry ; 23(28): 6706-6716, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27960050

RESUMEN

A description and history of the role that 8-oxo-7,8-dihydroadenine (8-oxoAde) and 8-oxo-7,8-dihydroadenosine (8-oxoA) have in various fields has been compiled. This Review focusses on 1) the formation of this oxidatively generated modification in RNA, its interactions with other biopolymers, and its potential role in the development/progression of disease; 2) the independent synthesis and incorporation of this modified nucleoside into oligonucleotides of RNA to display the progress that has been made in establishing its behavior in biologically relevant systems; 3) reported synthetic routes, which date back to 1890, along with the progress that has been made in the total synthesis of the nucleobase, nucleoside, and their corresponding derivatives; and 4) the isolation, total synthesis, and biological activity of natural products containing these moieties as the backbone. The current state of research regarding this oxidatively generated lesion as well as its importance in the context of RNA, natural products, and potential as drug derivatives is illustrated using all available examples reported to date.


Asunto(s)
Adenina/análogos & derivados , Adenosina/análogos & derivados , Productos Biológicos/química , ARN/química , Adenina/síntesis química , Adenina/química , Adenosina/síntesis química , Adenosina/química , Productos Biológicos/síntesis química , Oxidación-Reducción , Nucleótidos de Purina/química , Espectrofotometría
13.
J Org Chem ; 81(19): 8947-8958, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27584708

RESUMEN

Dodecamers of RNA [CUACGGAAUCAU] were functionalized with C2'-O-2-thiophenylmethyl groups to obtain oligonucleotides 10-14 and 17. The modified nucleotides were incorporated into RNA strands via solid-phase synthesis. The biophysical properties of these ONs were used to quantify the effects of this modification on RNA:RNA and RNA:DNA duplexes. A combination of UV-vis and circular dichroism were used to determine thermal stabilities of all strands, which hybridized into A-form geometries. Destabilization of the double stranded RNA was measured as a function of number of consecutive modifications, reflected in decreased thermal denaturation values (ΔTm, ca. 2.5-11.5 °C). Van't Hoff plots on a duplex containing one modification (10:15) displayed a ca. ΔΔG° of +4 kcal/mol with respect to its canonical analogue. Interestingly, hybridization of two modified strands (13:17, containing a total of eight modifications) resulted in increased stability and a distinct secondary structure, reflected in its CD spectrum. Molecular modeling based on DFT calculations shed light on the nature of this stability, with induced changes in the torsional angle δ (C5'-C4'-C3'-O3) and phosphate-phosphate distances that are in agreement with a compacted structure. The described synthetic methodology and structural information will be useful in the design of thermodynamically stable structures containing chemically reactive modifications.

14.
Biopolymers ; 103(3): 167-74, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25363418

RESUMEN

Circular dichroism (CD) was used to assess the stabilization/destabilization imposed by oxidative lesion 7,8-dihydro-8-hydroxyadenosine (8-oxoA) on strands of RNA with different structural motifs. RNA:RNA homoduplex destabilization was observed in a position dependent manner using 10-mers as models that displayed differences between 12.7 and 15.1°C. We found that increasing the number of modifications resulted in depressed Tm values of about 12-15°C per lesion. The same effect was observed on RNA:DNA heteroduplex samples. We also tested the effects of this lesion in short hairpins containing the tetraloop UUCX (X = A, 8-oxoA). We found that the stem was hypersensitive to substitution of A by 8-oxoA and that it destabilized the structure by >23°C. Concomitant substitution at the stem and loop prevented formation of this secondary structure or lead to other less-stable hairpins. Incorporation of this lesion at the first base of the loop had no effect on either structure. Overall, we found that the effects of 8-oxoA on RNA structure are position dependent and that its stabilization may vary from sharp decreases to small increments, in some cases, leading to the formation of other more/less stable structures. These structural changes may have larger biological implications, particularly if the oxidatively modified RNA persists, thus leading to changes in RNA reactivity and function.


Asunto(s)
Adenosina/análogos & derivados , Oligonucleótidos/química , ARN/química , Adenosina/química , Dicroismo Circular , Conformación de Ácido Nucleico
15.
J Am Chem Soc ; 134(30): 12478-81, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22827464

RESUMEN

Photolabile nucleotides that disrupt nucleic acid structure are useful mechanistic probes and can be used as tools for regulating biochemical processes. Previous probes can be limited by the need to incorporate multiple modified nucleotides into oligonucleotides and in kinetic studies by the rate-limiting step in the conversion to the native nucleotide. Photolysis of aryl sulfide 1 produces high yields of 5-methyluridine, and product formation is complete in less than a microsecond. Aryl sulfide 1 prevents RNA hairpin formation and complete folding of the preQ(1) class I riboswitch. Proper folding is achieved in each instance upon photolysis at 350 nm. Aryl sulfide 1 is a novel tool for modulating RNA structure, and formation of 5-methyluridine within a radical cage suggests that it will be useful in kinetic studies.


Asunto(s)
Conformación de Ácido Nucleico/efectos de la radiación , Fotólisis , ARN/química , Sulfuros/química , Uridina/análogos & derivados , Secuencia de Bases , Dicroismo Circular , Modelos Moleculares , Riboswitch/efectos de la radiación , Uridina/química
16.
J Am Chem Soc ; 134(8): 3917-24, 2012 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-22335525

RESUMEN

Nucleobase radicals are the major family of reactive intermediates produced when nucleic acids are exposed to γ-radiolysis. The 5,6-dihydrouridin-5-yl radical (1), the formal product of hydrogen atom addition and a model for hydroxyl radical addition, was independently generated from a ketone precursor via Norrish Type I photocleavage in single and double stranded RNA. Radical 1 produces direct strand breaks at the 5'-adjacent nucleotide and only minor amounts of strand scission are observed at the initial site of radical generation. Strand scission occurs preferentially in double stranded RNA and in the absence of O(2). The dependence of strand scission efficiency from the 5,6-dihydrouridin-5-yl radical (1) on secondary structure under anaerobic conditions suggests that this reactivity may be useful for extracting additional RNA structural information from hydroxyl radical reactions. Varying the identity of the 5'-adjacent nucleotide has little effect on strand scission. Internucleotidyl strand scission occurs via ß-elimination of the 3'-phosphate following C2'-hydrogen atom abstraction by 1. The subsequently formed olefin cation radical yields RNA fragments containing 3'-phosphate or 3'-deoxy-2'-ketonucleotide termini from competing deprotonation pathways. The ketonucleotide end group is favored in the presence of low concentrations of thiol, presumably by reducing the cation radical to the enol. Competition studies with thiol show that strand scission from the 5,6-dihydrouridin-5-yl radical (1) is significantly faster than from the 5,6-dihydrouridin-6-yl radical (2) and is consistent with computational studies using the G3B3 approach that predict the latter to be more stable than 1 by 2.8 kcal/mol.


Asunto(s)
Pirimidinas/química , ARN Bicatenario/química , Radicales Libres/química , Estructura Molecular
17.
J Am Chem Soc ; 133(13): 5152-9, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21391681

RESUMEN

Nucleobase radicals are the major reactive intermediates produced when hydroxyl radical reacts with nucleic acids. 5,6-Dihydrouridin-6-yl radical (1) was independently generated from a ketone precursor via Norrish Type I photocleavage in a dinucleotide, single-stranded, and double-stranded RNA. This radical is a model of the major hydroxyl radical adduct of uridine. Tandem lesions resulting from addition of the peroxyl radical derived from 1 to the 5'-adjacent nucleotide are observed by ESI-MS. Radical 1 produces direct strand breaks at the 5'-adjacent nucleotide and at the initial site of generation. The preference for cleavage at these two positions depends upon the secondary structure of the RNA and whether O(2) is present or not. Varying the identity of the 5'-adjacent nucleotide has little effect on strand scission. In general, strand scission is significantly more efficient under anaerobic conditions than when O(2) is present. Strand scission is more than twice as efficient in double-stranded RNA than in a single-stranded oligonucleotide under anaerobic conditions. Internucleotidyl strand scission occurs via ß-fragmentation following C2'-hydrogen atom abstraction by 1. The subsequently formed olefin cation radical ultimately yields products containing 3'-phosphate or 3'-deoxy-2'-ketouridine termini. These end groups are proposed to result from competing deprotonation pathways. The dependence of strand scission efficiency from 1 on secondary structure under anaerobic conditions suggests that this reactivity may be useful for extracting additional RNA structural information from hydroxyl radical reactions.


Asunto(s)
Pirimidinas/análisis , ARN/química , Radicales Libres/análisis , Conformación de Ácido Nucleico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
J Am Chem Soc ; 132(11): 3668-9, 2010 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-20184313

RESUMEN

RNA oxidation is important in the etiology of disease and as a tool for studying the structure and folding kinetics of this biopolymer. Nucleobase radicals are the major family of reactive intermediates produced in RNA exposed to diffusible species such as hydroxyl radical. The nucleobase radicals are believed to produce direct strand breaks by abstracting hydrogen atoms from their own and neighboring ribose rings. By independently generating the formal C5 hydrogen atom addition product of uridine in RNA, we provide the first chemical characterization of the pathway for direct strand scission from an RNA nucleobase radical. The process is more efficient under anaerobic conditions. The preference for strand scission in double-stranded RNA over single-stranded RNA suggests that this chemistry may be useful for analyzing the secondary structure of RNA in hydroxyl radical cleavage experiments if they are carried out under anaerobic conditions.


Asunto(s)
Radical Hidroxilo/metabolismo , ARN/química , ARN/metabolismo , Anaerobiosis , Secuencia de Bases , Desnaturalización de Ácido Nucleico , ARN/genética
19.
J Am Chem Soc ; 132(1): 82-4, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20000762

RESUMEN

Photochemical reactions of organic molecules in the solid state have an excellent potential in green chemistry technologies as they often proceed in high yields to give a single product without generating volatile organic solvent waste. While recent synthetic applications highlight the need for a better understanding of reaction mechanisms and kinetics, spectroscopic observations of excited states and short-lived intermediates in single crystals and powdered samples have been extremely challenging due to the high optical density and scattering power of single crystals and powdered samples. In this communication, we report the first direct observation of a radical pair triplet state by time-resolved electron paramagnetic resonance (TREPR) with nanocrystals of 4,4'-dimethoxy-dicumyl ketone (1OMe) suspended in water. Steady state irradiation of 1OMe had previously shown that reactions in dry powders and nanocrystalline suspensions proceed with high efficiency and chemoselectivity to generate 4,4'-dimethoxy-dicumene 2OMe by decarbonylation and radical coupling. The nanocrystalline suspensions were excited with an 25 ns laser pulse at 308 nm using a flow system within the cavity of a time-resolved EPR spectrometer. The resulting TREPR spectra showed strong spin polarization with enhanced absorption A and emission E signals in an AAAEEE pattern characteristic of a randomly oriented triplet with zero-field splitting parameters D = 243 G and E = 11 G as well as an isotropic exchange integral J = -45,000 G. The assignment of this spectrum to a radical pair triplet state was supported by measurements carried out in fluid solution and in frozen glasses, which allowed for the characterization of the free radical and the triplet excited molecular state of the starting ketone 1OMe.

20.
J Org Chem ; 74(18): 7007-12, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19691299

RESUMEN

Nucleobase radicals are the major family of reactive intermediates formed when nucleic acids are exposed to hydroxyl radical, which is produced by gamma-radiolysis and Fe.EDTA. Significant advances have been made in understanding the role of nucleobase radicals in oxidative DNA damage by independently generating these species from photochemical precursors. However, this approach has been used much less frequently to study RNA molecules. Norrish type I photocleavage of the tert-butyl ketone (2b) enabled studying the reactivity of 5'-benzoyl-5,6-dihydrouridin-6-yl (1b). High mass balances were observed under aerobic or anaerobic conditions, and O(2) did not affect the photochemical conversion of the ketone (2b) to 1b. Competition studies with O(2) indicate that the radical abstracts hydrogen atoms from beta-mercaptoethanol with a bimolecular rate constant = 2.6 +/- 0.5 x 10(6) M(-1)s(-1). The major product formed in the presence of O(2) was 5'-benzoyl-6-hydroxy-5,6-dihydrouridine (6). In contrast, 5-benzoyl-ribonolactone (7), a hypothetical product resulting from C1'-hydrogen atom abstraction by the peroxyl radical, could not be detected. Overall, tert-butyl ketone 2b is a clean source of 5'-benzoyl-5,6-dihydrouridin-6-yl (1b) and should prove useful for studying the reactivity of the respective radical in RNA.


Asunto(s)
Daño del ADN , ADN , Radicales Libres , Fotoquímica , Uridina/análogos & derivados , Benzoatos/química , ADN/química , ADN/efectos de la radiación , Radicales Libres/química , Radicales Libres/efectos de la radiación , Cinética , Lactonas/química , Mercaptoetanol/química , Oxígeno/química , Fotólisis , Ribosa/análogos & derivados , Ribosa/química , Estereoisomerismo , Uridina/química , Uridina/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...