Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(1): 22, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150091

RESUMEN

KEY MESSAGE: A novel plant binary expression system was developed from the compactin biosynthetic pathway 27 of Penicillium citrinum ML-236B. The system achieved >fivefold activation of gene expression in 28 transgenic tobacco. A diverse and well-characterized genetic toolset is fundamental to achieve the overall goals of plant synthetic biology. To properly coordinate expression of a multigene pathway, this toolset should include binary systems that control gene expression at the level of transcription. In plants, few highly functional, orthogonal transcriptional regulators have been identified. Here, we describe the process of developing synthetic plant transcription factors using regulatory elements from the Penicillium citrinum ML-236B (compactin) pathway. This pathway contains several genes including mlcA and mlcC that are transcriptionally regulated in a dose-dependent manner by the activator mlcR. In Nicotiana benthamiana, we first expressed mlcR with several cognate synthetic promoters driving expression of GFP. Synthetic promoters contained operator sequences from the compactin gene cluster. Following identification of the most active synthetic promoter, the DNA-binding domain from mlcR was used to generate chimeric transcription factors containing variable activation domains, including QF from the Neurospora crassa Q-system. Activity was measured at both protein and RNA levels which correlated with an R2 value of 0.94. A synthetic transcription factor with a QF activation domain increased gene expression from its synthetic promoter up to sixfold in N. benthamiana. Two systems were characterized in transgenic tobacco plants. The QF-based plants maintained high expression in tobacco, increasing expression from the cognate synthetic promoter by fivefold. Transgenic plants and non-transgenic plants were morphologically indistinguishable. The framework of this study can easily be adopted for other putative transcription factors to continue improvement of the plant synthetic biology toolbox.


Asunto(s)
Penicillium , Biología Sintética , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética
2.
ACS Synth Biol ; 11(8): 2741-2755, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35901078

RESUMEN

While the installation of complex genetic circuits in microorganisms is relatively routine, the synthetic biology toolbox is severely limited in plants. Of particular concern is the absence of combinatorial analysis of regulatory elements, the long design-build-test cycles associated with transgenic plant analysis, and a lack of naming standardization for cloning parts. Here, we use previously described plant regulatory elements to design, build, and test 91 transgene cassettes for relative expression strength. Constructs were transiently transfected into Nicotiana benthamiana leaves and expression of a fluorescent reporter was measured from plant canopies, leaves, and protoplasts isolated from transfected plants. As anticipated, a dynamic level of expression was achieved from the library, ranging from near undetectable for the weakest cassette to a ∼200-fold increase for the strongest. Analysis of expression levels in plant canopies, individual leaves, and protoplasts were correlated, indicating that any of the methods could be used to evaluate regulatory elements in plants. Through this effort, a well-curated 37-member part library of plant regulatory elements was characterized, providing the necessary data to standardize construct design for precision metabolic engineering in plants.


Asunto(s)
Nicotiana , Biología Sintética , ADN/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Biología Sintética/métodos , Nicotiana/genética
3.
Front Plant Sci ; 13: 873480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548302

RESUMEN

Phytosensors are genetically engineered plant-based sensors that feature synthetic promoters fused to reporter genes to sense and report the presence of specific biotic and abiotic stressors on plants. However, when induced reporter gene output is below detectable limits, owing to relatively weak promoters, the phytosensor may not function as intended. Here, we show modifications to the system to amplify reporter gene signal by using a synthetic transcription factor gene driven by a plant pathogen-inducible synthetic promoter. The output signal was unambiguous green fluorescence when plants were infected by pathogenic bacteria. We produced and characterized a phytosensor with improved sensing to specific bacterial pathogens with targeted detection using spectral wavelengths specific to a fluorescence reporter at 3 m standoff detection. Previous attempts to create phytosensors revealed limitations in using innate plant promoters with low-inducible activity since they are not sufficient to produce a strong detectable fluorescence signal for standoff detection. To address this, we designed a pathogen-specific phytosensor using a synthetic promoter-transcription factor system: the S-Box cis-regulatory element which has low-inducible activity as a synthetic 4xS-Box promoter, and the Q-system transcription factor as an amplifier of reporter gene expression. This promoter-transcription factor system resulted in 6-fold amplification of the fluorescence after infection with a potato pathogen, which was detectable as early as 24 h post-bacterial infection. This novel bacterial pathogen-specific phytosensor potato plant demonstrates that the Q-system may be leveraged as a powerful orthogonal tool to amplify a relatively weak synthetic inducible promoter, enabling standoff detection of a previously undetectable fluorescence signal. Pathogen-specific phytosensors would be an important asset for real-time early detection of plant pathogens prior to the display of disease symptoms on crop plants.

4.
Trends Plant Sci ; 25(12): 1176-1179, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32891561

RESUMEN

Until recently, robust autoluminescence in plants has proven elusive. Two recent pioneering manuscripts (Khakhar et al. and Mitiouchkina et al.) expand our understanding of fungal bioluminescence to provide a new blueprint for engineering autoluminescence in plants. Here we discuss translating a fungal bioluminescence pathway into plants, along with potential future applications.


Asunto(s)
Hongos , Plantas , Luciferasas , Plantas/genética
5.
Front Plant Sci ; 11: 245, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32218793

RESUMEN

A primary focus of the rapidly growing field of plant synthetic biology is to develop technologies to precisely regulate gene expression and engineer complex genetic circuits into plant chassis. At present, there are few orthogonal tools available for effectively controlling gene expression in plants, with most researchers instead using a limited set of viral elements or truncated native promoters. A powerful repressible-and engineerable-binary system that has been repurposed in a variety of eukaryotic systems is the Q-system from Neurospora crassa. Here, we demonstrate the functionality of the Q-system in plants through transient expression in soybean (Glycine max) protoplasts and agroinfiltration in Nicotiana benthamiana leaves. Further, using functional variants of the QF transcriptional activator, it was possible to modulate the expression of reporter genes and to fully suppress the system through expression of the QS repressor. As a potential application for plant-based biosensors (phytosensors), we demonstrated the ability of the Q-system to amplify the signal from a weak promoter, enabling remote detection of a fluorescent reporter that was previously undetectable. In addition, we demonstrated that it was possible to coordinate the expression of multiple genes through the expression of a single QF activator. Based on the results from this study, the Q-system represents a powerful orthogonal tool for precise control of gene expression in plants, with envisioned applications in metabolic engineering, phytosensors, and biotic and abiotic stress tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA