Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Nat Chem ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38702406

Porous covalent organic frameworks (COFs) enable the realization of functional materials with molecular precision. Past research has typically focused on generating rigid frameworks where structural and optoelectronic properties are static. Here we report dynamic two-dimensional (2D) COFs that can open and close their pores upon uptake or removal of guests while retaining their crystalline long-range order. Constructing dynamic, yet crystalline and robust frameworks requires a well-controlled degree of flexibility. We have achieved this through a 'wine rack' design where rigid π-stacked columns of perylene diimides are interconnected by non-stacked, flexible bridges. The resulting COFs show stepwise phase transformations between their respective contracted-pore and open-pore conformations with up to 40% increase in unit-cell volume. This variable geometry provides a handle for introducing stimuli-responsive optoelectronic properties. We illustrate this by demonstrating switchable optical absorption and emission characteristics, which approximate 'null-aggregates' with monomer-like behaviour in the contracted COFs. This work provides a design strategy for dynamic 2D COFs that are potentially useful for realizing stimuli-responsive materials.

2.
Opt Lett ; 48(17): 4601-4604, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37656565

We demonstrate sensitive electric field measurements by coherent homodyne amplification of the electric field induced second harmonic generation (E-FISH) technique. In the process of E-FISH, an applied electric field breaks the centrosymmetry of an otherwise homogeneous medium, in turn promoting the generation of the second harmonic frequency of an incident field. Due to weak third-order hyperpolarizability and the requirement of an applied field to break the symmetry, the E-FISH technique has been mainly used to study high fields, also requiring a strong optical field and sensitive detection. Here we superimpose the E-FISH signal with an auxiliary beam, also termed a local oscillator (LO), at double the incident frequency. Coherent superposition of the LO and the E-FISH output (LOE-FISH) allows for a homodyne amplification of the otherwise weak nonlinear signal. We have demonstrated an increase of signal-to-noise by a factor of seven, which results in a measurement time reduction of a factor of 49. This technique, LOE-FISH, has a number of advantages: detection with intensified detectors is not required. Furthermore, instead of millijoule pulsed lasers, we can work with microjoule pulsed lasers, which allows measuring at repetition rates of megahertz and opens single shot and real-time capability. The LOE-FISH technique increases in sensitivity at lower electric field values. Our work is a demonstration of the principle. Already with our first results from the demonstration, one can see the high potential of LOE-FISH.

3.
Opt Lett ; 44(15): 3853-3856, 2019 Aug 01.
Article En | MEDLINE | ID: mdl-31368985

We present an approach for the measurement of time evolving electric field profiles in atmospheric pressure plasma discharges using electric field induced second harmonic generation (E-FISH). While the E-FISH effect has been known of for some time, recent advances in laser and detection technology have allowed the method to be utilized for spatial measurements of an arbitrarily applied electric field. A cylindrical lens is used to focus the femtosecond laser light to a line and an intensified charge coupled device is used for detection, allowing for one-dimensional (1D) spatial resolution on the order of ∼50 µm. Measurements have been carried out verifying the spatial resolution using a spatially periodic, localized electric field. Calibrated 1D electric field measurements have been completed with a time resolution of 500 ps in a laminar cold atmospheric pressure plasma jet with argon core flow and N2 co-flow powered by a nanosecond (ns) pulse dielectric barrier discharge. The field was shown to propagate as an ionization wave, with a velocity of ∼0.3 mm/ns.

4.
J Am Chem Soc ; 141(32): 12570-12581, 2019 Aug 14.
Article En | MEDLINE | ID: mdl-31251878

Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host-guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation.

5.
Phys Chem Chem Phys ; 21(17): 8883-8896, 2019 Apr 24.
Article En | MEDLINE | ID: mdl-30982833

Qualitative detection of peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) as one of the key bactericidal agents produced in cold air plasma activated aqueous solutions is presented. We examined the use of the 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA) fluorescent dye to detect ONOO-/ONOOH in plasma activated non-buffered water (PAW) or buffered solution (PAPB) generated by DC-driven self-pulsed transient spark discharge at atmospheric pressure in ambient air. The diagnostic selectivity of H2DCFDA to reactive oxygen and nitrogen species (RONS) typical of plasma activated aqueous solutions was examined by using various scavengers of RONS. This cross-reactivity study showed the highest sensitivity of the H2DCFDA dye to ONOO-/ONOOH. However, besides ONOO-/ONOOH, H2DCFDA also exhibited sensitivity to hypochlorite anions/hypochlorous acid (OCl-/HOCl), showing that for a selective study it is important to have an idea about the possible constituents in the studied solutions. The sensitivity of H2DCFDA to other RONS even in much higher concentrations was negligible. The presence of nitrites (NO2-) and hydrogen peroxide (H2O2) in PAW led predominantly to the production of peroxynitrous acid with a strong fluorescence response of H2DCFDA in PAW. Plasma treatment of buffered solutions led to the weak response of H2DCFDA. The fluorescence induced in PAW decreased after scavenging individual reactants, namely NO2- and H2O2, as well as by scavenging the product of the peroxynitrite forming reaction, proving that the fluorescence response of H2DCFDA is primarily due to the formation of ONOO-/ONOOH. A chemical kinetics analysis of post-discharge processes and the pseudo-second order reaction between H2O2 and NO2- confirms formation of peroxynitrous acid in PAW with a rate in the order of tens of nM per second. The post-discharge evolution of the ONOOH formation rate was clearly correlated with the parallel detection of ONOO-/ONOOH by fluorescence spectroscopy using the H2DCFDA dye.


Fluorescent Dyes/chemistry , Peroxynitrous Acid/chemistry , Plasma Gases/chemistry , Fluoresceins/chemistry , Hydrogen Peroxide/chemistry , Hypochlorous Acid/chemistry , Kinetics , Nitrites/chemistry , Oxidation-Reduction , Reactive Nitrogen Species/chemistry , Reactive Oxygen Species/chemistry , Spectrometry, Fluorescence/methods , Water/chemistry
6.
Sci Rep ; 8(1): 12195, 2018 08 15.
Article En | MEDLINE | ID: mdl-30111826

In the field of plasma medicine, the identification of relevant reactive species in the liquid phase is highly important. To design the plasma generated species composition for a targeted therapeutic application, the point of origin of those species needs to be known. The dominant reactive oxygen species generated by the plasma used in this study are atomic oxygen, ozone, and singlet delta oxygen. The species density changes with the distance to the active plasma zone, and, hence, the oxidizing potential of this species cocktail can be tuned by altering the treatment distance. In both phases (gas and liquid), independent techniques have been used to determine the species concentration as a function of the distance. The surrounding gas composition and ambient conditions were controlled between pure nitrogen and air-like by using a curtain gas device. In the gas phase, in contrast to the ozone density, the singlet delta oxygen density showed to be more sensitive to the distance. Additionally, by changing the surrounding gas, admixing or not molecular oxygen, the dynamics of ozone and singlet delta oxygen behave differently. Through an analysis of the reactive species development for the varied experimental parameters, the importance of several reaction pathways for the proceeding reactions was evaluated and some were eventually excluded.


Ozone/analysis , Plasma Gases/therapeutic use , Singlet Oxygen/analysis , Oxygen , Phase Transition , Reactive Oxygen Species/analysis
7.
J Am Chem Soc ; 139(24): 8194-8199, 2017 06 21.
Article En | MEDLINE | ID: mdl-28586200

Two-dimensional covalent organic frameworks (2D-COFs) are crystalline, porous materials comprising aligned columns of π-stacked building blocks. With a view toward the application of these materials in organic electronics and optoelectronics, the construction of oligothiophene-based COFs would be highly desirable. The realization of such materials, however, has remained a challenge, in particular with respect to laterally conjugated imine-linked COFs. We have developed a new building block design employing an asymmetric modification on an otherwise symmetric backbone that allows us to construct a series of highly crystalline quaterthiophene-derived COFs with tunable electronic properties. Studying the optical response of these materials, we have observed for the first time the formation of a charge transfer state between the COF subunits across the imine bond. We believe that our new building block design provides a general strategy for the construction of well-ordered COFs from various extended building blocks, thus greatly expanding the range of applicable molecules.

8.
J Am Chem Soc ; 138(51): 16703-16710, 2016 12 28.
Article En | MEDLINE | ID: mdl-27992179

Covalent organic frameworks (COFs), formed by reversible condensation of rigid organic building blocks, are crystalline and porous materials of great potential for catalysis and organic electronics. Particularly with a view of organic electronics, achieving a maximum degree of crystallinity and large domain sizes while allowing for a tightly π-stacked topology would be highly desirable. We present a design concept that uses the 3D geometry of the building blocks to generate a lattice of uniquely defined docking sites for the attachment of consecutive layers, thus allowing us to achieve a greatly improved degree of order within a given average number of attachment and detachment cycles during COF growth. Synchronization of the molecular geometry across several hundred nanometers promotes the growth of highly crystalline frameworks with unprecedented domain sizes. Spectroscopic data indicate considerable delocalization of excitations along the π-stacked columns and the feasibility of donor-acceptor excitations across the imine bonds. The frameworks developed in this study can serve as a blueprint for the design of a broad range of tailor-made 2D COFs with extended π-conjugated building blocks for applications in photocatalysis and optoelectronics.

9.
Org Lett ; 18(13): 3158-61, 2016 07 01.
Article En | MEDLINE | ID: mdl-27321707

Pyridonaphthyridines (triazaphenanthrenes) were prepared in 4 steps and in 13-52% overall yield using Negishi cross-couplings between iodopicolines and 2-chloro-pyridylzinc derivatives. After chlorination, Gabriel amination and spontaneous ring-closure, the final aromatization leading to the triazaphenanthrenes was achieved with chloranil. This heterocyclic scaffold underwent a nucleophilic addition at position 6 leading to further functionalized pyridonaphthyridines. The influence of these chemical modifications on the optical properties was studied by steady-state and time-resolved optical spectroscopy. While the thiophene-substituted heterocycles exhibited the most extended absorption, the phenyl- and furan-substituted compounds showed a stronger photoluminescence, reaching above 20% quantum yield and lifetimes of several nanoseconds.

10.
Rev Sci Instrum ; 87(4): 043117, 2016 04.
Article En | MEDLINE | ID: mdl-27131664

A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90(∘) off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s5) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

11.
Biointerphases ; 10(2): 029506, 2015 Jun 01.
Article En | MEDLINE | ID: mdl-25832438

One of the most desired aims in plasma medicine is to inactivate prokaryotic cells and leave eukaryotic cells unharmed or even stimulate proliferation to promote wound healing. The method of choice is to precisely control the plasma component composition. Here the authors investigate the inactivation of bacteria (Escherichia coli) by a plasma jet treatment. The reactive species composition created by the plasma in liquids is tuned by the use of a shielding gas device to achieve a reactive nitrogen species dominated condition or a reactive oxygen species dominated condition. A strong correlation between composition of the reactive components and the inactivation of the bacteria is observed. The authors compare the results to earlier investigations on eukaryotic cells and show that it is possible to find a plasma composition where bacterial inactivation is strongest and adverse effects on eukaryotic cells are minimized.


Disinfectants/pharmacology , Escherichia coli/drug effects , Escherichia coli/radiation effects , Microbial Viability/drug effects , Microbial Viability/radiation effects , Plasma Gases/pharmacology , Disinfectants/adverse effects , Plasma Gases/adverse effects , Reactive Nitrogen Species/metabolism , Reactive Nitrogen Species/toxicity , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/toxicity
12.
PLoS One ; 8(7): e70462, 2013.
Article En | MEDLINE | ID: mdl-23894661

The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds.


Anti-Infective Agents/pharmacology , Biofilms/drug effects , Anti-Infective Agents/chemistry , Anti-Infective Agents, Local/chemistry , Anti-Infective Agents, Local/pharmacology , Chlorhexidine/analogs & derivatives , Chlorhexidine/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus epidermidis/drug effects
...