Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Chem Sci ; 14(42): 11775-11789, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37920342

The phenomenon of molecular crystal polymorphism is of central importance for all those industries that rely on crystallisation for the manufacturing of their products. Computational methods for the evaluation of thermodynamic properties of polymorphs have become incredibly accurate and a priori prediction of crystal structures is becoming routine. The computational study and prediction of the kinetics of crystallisation impacting polymorphism, however, have received considerably less attention despite their crucial role in directing crystallisation outcomes. This is mainly due to the lack of available experimental data, as nucleation and growth kinetics of polymorphs are generally difficult to measure. On the one hand, the determination of overall nucleation and growth kinetics through batch experiments suffers from unwanted polymorphic transformations or the absence of experimental conditions under which several polymorphs can be nucleated. On the other hand, growth rates of polymorphs obtained from measurements of single crystals are often only recorded along a few specific crystal dimensions, thus lacking information about overall growth and rendering an incomplete picture of the problem. In this work, we measure the crystal growth kinetics of three polymorphs (I, II and IX) of tolfenamic acid (TFA) in isopropanol solutions, with the intention of providing a meaningful comparison of their growth rates. First, we analyse the relation between the measured growth rates and the crystal structures of the TFA polymorphs. We then explore ways to compare their relative growth rates and discuss their significance when trying to determine which polymorph grows faster. Using approximations for describing the volume of TFA crystals, we show that while crystals of the metastable TFA-II grow the fastest at all solution concentrations, crystals of the metastable TFA-IX become kinetically competitive as the driving force for crystallisation increases. Overall, both metastable forms TFA-II and TFA-IX grow faster than the stable TFA-I.

2.
Nature ; 623(7986): 324-328, 2023 Nov.
Article En | MEDLINE | ID: mdl-37938708

The physicochemical properties of molecular crystals, such as solubility, stability, compactability, melting behaviour and bioavailability, depend on their crystal form1. In silico crystal form selection has recently come much closer to realization because of the development of accurate and affordable free-energy calculations2-4. Here we redefine the state of the art, primarily by improving the accuracy of free-energy calculations, constructing a reliable experimental benchmark for solid-solid free-energy differences, quantifying statistical errors for the computed free energies and placing both hydrate crystal structures of different stoichiometries and anhydrate crystal structures on the same energy landscape, with defined error bars, as a function of temperature and relative humidity. The calculated free energies have standard errors of 1-2 kJ mol-1 for industrially relevant compounds, and the method to place crystal structures with different hydrate stoichiometries on the same energy landscape can be extended to other multi-component systems, including solvates. These contributions reduce the gap between the needs of the experimentalist and the capabilities of modern computational tools, transforming crystal structure prediction into a more reliable and actionable procedure that can be used in combination with experimental evidence to direct crystal form selection and establish control5.

3.
J Chem Phys ; 153(24): 244105, 2020 Dec 28.
Article En | MEDLINE | ID: mdl-33380078

Lattice-switch Monte Carlo and the related diabat methods have emerged as efficient and accurate ways to compute free energy differences between polymorphs. In this work, we introduce a one-to-one mapping from the reference positions and displacements in one molecular crystal to the positions and displacements in another. Two features of the mapping facilitate lattice-switch Monte Carlo and related diabat methods for computing polymorph free energy differences. First, the mapping is unitary so that its Jacobian does not complicate the free energy calculations. Second, the mapping is easily implemented for molecular crystals of arbitrary complexity. We demonstrate the mapping by computing free energy differences between polymorphs of benzene and carbamazepine. Free energy calculations for thermodynamic cycles, each involving three independently computed polymorph free energy differences, all return to the starting free energy with a high degree of precision. The calculations thus provide a force field independent validation of the method and allow us to estimate the precision of the individual free energy differences.

4.
IUCrJ ; 7(Pt 6): 955-964, 2020 Nov 01.
Article En | MEDLINE | ID: mdl-33209310

This contribution reviews the efforts of many scientists around the world to discover and structurally characterize olanzapine crystal forms, clearing up inconsistencies in the scientific and patent literature and highlighting the challenges in identifying new forms amidst 60+ known polymorphs and solvates. Owing to its remarkable solid-state chemistry, olanzapine has emerged over the last three decades as a popular tool compound for developing new experimental and computational methods for enhanced molecular level understanding of solid-state structure, form diversity and crystallization outcomes. This article highlights the role of olanzapine in advancing the fundamental understanding of crystal forms, interactions within crystal structures, and growth units in molecular crystallization, as well as influencing the way in which drugs are developed today.

5.
Nat Chem ; 12(10): 887-888, 2020 10.
Article En | MEDLINE | ID: mdl-32968228
6.
Pharm Res ; 37(8): 163, 2020 Aug 04.
Article En | MEDLINE | ID: mdl-32754797

PURPOSE: Mesoporous silica-based formulations of poorly soluble drugs may exhibit incomplete drug release due to drug remaining adsorbed on the silica surface. The goal of this study was (1) to evaluate the adsorption tendency of atazanavir from aqueous solution onto mesoporous silica (SBA-15) and (2) to determine if the drug release from mesoporous silica formulations was promoted by the presence of an absorptive compartment during dissolution testing. METHODS: Atazanavir (ATZ) formulations with different drug loadings were prepared by incipient impregnation. The solid-state properties of the formulations were analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectroscopy and thermogravimetric analysis. Drug release was compared for closed compartment versus absorptive dissolution testing at gastric and intestinal pH. RESULTS: XRD and DSC showed that all formulations were amorphous. Infrared spectra indicated intermolecular interactions between silanol groups in SBA-15 and carbonyl groups in atazanavir. Nanoconfinement of drug in silica mesopores was suggested by thermal analysis. Closed compartment dissolution testing showed incomplete drug release, largely due to the adsorption tendency of ATZ. However, coupled dissolution-absorption studies showed complete release over a 240 min time period. This suggested that the depletion of drug in the dissolution medium due to drug diffusion across the membrane promotes drug release. Drug release was further improved when the formulation was first added to fasted state gastric pH conditions followed by pH-shift to intestinal conditions, which was attributed to the higher solubility of atazanavir at low pH. However, ATZ mesoporous silica formulations showed a poorer overall absorption behavior relative to a polymer-based amorphous solid dispersion formulation. CONCLUSION: This study highlights that absorptive dissolution conditions promote drug desorption from the silica surface and hence, enhance drug release. Further, the influence of solution pH on drug release underscores the need to consider how variations in physiological conditions may impact the performance of mesoporous silica-based formulations. Graphical Abstract Drug release and adsorption tendency in the absence and presence of an absorptive sink during dissolution testing.


Atazanavir Sulfate/administration & dosage , Drug Carriers/chemistry , Drug Compounding/methods , Silicon Dioxide/chemistry , Administration, Oral , Adsorption , Drug Liberation
7.
Mol Pharm ; 17(9): 3435-3446, 2020 09 08.
Article En | MEDLINE | ID: mdl-32790416

Mesoporous silica particles are attractive carriers for poorly soluble drugs whereby confinement of drugs in the mesopores leads to amorphization, which makes them potential carriers for enhanced oral delivery. However, interactions between the drug molecules and the silica surface can lead to incomplete drug release. The strength of the interaction depends on the silica surface chemistry, which varies as a function of pH, as well as on drug chemistry and ionization states. Herein, the adsorption and dissolution behavior of weakly basic drugs were evaluated as a function of pH to understand the impact of electrostatic interactions on the performance of mesoporous silica-based formulations. A higher adsorption was noted when the drug interacted with the silica surface via electrostatic interactions compared to hydrogen bonding. Higher adsorption, in turn, led to a lower extent of drug release. In two-stage release studies of drugs with pKa values close to the intestinal pH, a shift from low to higher pH solutions resulted in a decrease in the solution concentration. Further investigations demonstrated that this was due to readsorption of the drug, initially released in the acidic medium when the pH was increased. Two-stage release studies were also coupled with mass transport measurements. Only a slight improvement in drug release due to simultaneous absorption across a membrane was observed, suggesting strong drug adsorption to the silica surface arising from favorable electrostatic interactions, which diminishes the effect of sink conditions provided by the absorptive environment. This study highlights that physiological parameters, such as solution pH, are important considerations when designing mesoporous silica-based formulations for poorly soluble drugs. It also underscores the importance of incorporating in vivo-relevant conditions in in vitro testing to better evaluate these complex formulations due to the notable effect of dissolution media on the release behavior.


Drug Liberation/drug effects , Pharmaceutical Preparations/chemistry , Silicon Dioxide/chemistry , Adsorption , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Delivery Systems/methods , Hydrogen-Ion Concentration , Porosity , Solubility , Static Electricity
8.
J Pharm Sci ; 109(3): 1312-1323, 2020 03.
Article En | MEDLINE | ID: mdl-31765652

Amorphous solid dispersions typically improve the oral bioavailability of poorly soluble drugs. However, residual crystallinity is always a concern, in terms of potential impact on the product stability and performance. Consequently, in vitro tools that allow biorelevant assessment of residual crystallinity are of interest. The goal of the present study was to use absorptive dissolution testing to evaluate the impact of different levels of crystallinity in an amorphous formulation on membrane mass transport kinetics and supersaturation-time profiles. Partial crystallinity was induced in commercially available tacrolimus formulations by exposure to moderate temperature and high relative humidity. A hollow fiber membrane was coupled to a dissolution vessel to create an absorptive dissolution testing apparatus, and concentration-time profiles were simultaneously monitored during dissolution (donor compartment) and after absorption across the membrane (receiver compartment). The coupled dissolution-absorption measurements indicated that residual crystallinity impacted the absorption profiles in a manner that depended on the volume of fluid used for the dissolution measurement. A high percentage of residual crystallinity hampered the drug release from the formulation. Higher supersaturation in nonsink dissolution conditions improved mass transfer rates; however, the presence of seed crystals led to rapid desupersaturation. Further systematic studies to delineate the interplay between the rate of absorption and desupersaturation revealed that for a given dissolution rate, the crystallization rate would supersede the absorption rate only at high supersaturations. Thus, seeds have a lower impact on absorption when the overall supersaturation generated is lower. This study underscores the importance of considering competing physical processes when evaluating amorphous formulations. A further consideration highlighted is that different fluid volumes may impact the absorption profile for supersaturating dosage forms. Absorptive dissolution testing appears to be a potentially valuable tool to mechanistically investigate amorphous solid dispersion formulation release and phase behavior under more biorelevant conditions.


Tacrolimus , Biological Availability , Crystallization , Drug Liberation , Solubility
9.
J Am Chem Soc ; 141(35): 13887-13897, 2019 09 04.
Article En | MEDLINE | ID: mdl-31394896

The solid form screening of galunisertib produced many solvates, prompting an extensive investigation into possible risks to the development of the favored monohydrate form. Inspired by crystal structure prediction, the search for neat polymorphs was expanded to an unusual range of experiments, including melt crystallization under pressure, to work around solvate formation and the thermal instability of the molecule. Ten polymorphs of galunisertib were found; however, the structure predicted to be the most stable has yet to be obtained. We present the crystal structures of all ten unsolvated polymorphs of galunisertib, showing how state-of-the-art characterization methods can be combined with emerging computational modeling techniques to produce a complete structure landscape and assess the risk of late-appearing, more stable polymorphs. The exceptional conformational polymorphism of this prolific solvate former invites further development of methods, computational and experimental, that are applicable to larger, flexible molecules with complex solid form landscapes.

10.
Mol Pharm ; 16(1): 448-461, 2019 01 07.
Article En | MEDLINE | ID: mdl-30521350

The tendency of highly supersaturated solutions of poorly water-soluble drugs to undergo liquid-liquid phase separation (LLPS) into drug-rich and water-rich phases when the concentration exceeds the amorphous solubility, for example, during dissolution of some amorphous solid dispersions, is thought to be advantageous from a bioavailability enhancement perspective. Recently, we have developed a high surface area, flow-through absorptive dissolution testing apparatus that enables fast mass transfer providing more in vivo relevant conditions and time frames for formulation testing. Using this apparatus, the absorption behaviors of solutions with different extents of supersaturation below and above the amorphous solubility were evaluated. In addition, simultaneous dissolution-absorption testing of amorphous solid dispersions (ASDs) with varying drug loadings and polymer types was carried out to study and distinguish the absorption behavior of ASDs that do or do not undergo LLPS. When compared with closed-compartment dissolution testing, a significant influence of the absorptive compartment on the dissolution rate of ASDs, particularly at high drug loadings, was observed. The formation of drug-rich nanodroplets, generated by both solvent-addition and ASD dissolution, resulted in a higher amount of drug transferred across the membrane. Moreover, the mass transfer was further enhanced with increasing concentration above the amorphous solubility, thereby showing correlation with an increase in the number of drug-rich particles. The importance of including an absorptive compartment in dissolution testing is highlighted in this study, enabling coupling of dissolution to membrane transport, and providing a more meaningful comparison between different formulations.


Drug Liberation , Membranes/chemistry , Crystallization , Polymers/chemistry , Solubility
11.
Faraday Discuss ; 211(0): 459-476, 2018 10 26.
Article En | MEDLINE | ID: mdl-30039146

Over the past three decades, the development of methods for Crystal Structure Prediction (CSP) has primarily been curiosity-driven. Because of the obvious potential for economic gain from CSP, commercial interests can be assumed to eventually take over as the main driving force of development. We argue that this transition is happening right now, not only for commercial CSP providers, but also for consumers within industry. In the context of industry-wide efforts, we describe the exploration in CSP research and algorithm development by one large pharmaceutical company, Eli Lilly and Company, and the impact that this has had on experimental solid form screening and selection. We expect that, once CSP is sufficiently reliable and automated, it will become a standard tool for analytical chemistry, on par with X-ray diffraction, calorimetry and spectroscopy.

12.
J Pharm Sci ; 107(1): 5-17, 2018 01.
Article En | MEDLINE | ID: mdl-28989014

In the recent years, coamorphous systems, containing an active pharmaceutical ingredient (API) and a small molecule coformer have appeared as alternatives to the use of either amorphous solid dispersions containing polymer or cocrystals of API and small molecule coformers, to improve the dissolution and oral bioavailability of poorly soluble crystalline API. This Commentary article considers the relative properties of amorphous solid dispersions and coamorphous systems in terms of methods of preparation; miscibility; glass transition temperature; physical stability; hygroscopicity; and aqueous dissolution. It also considers important questions concerning the fundamental criteria to be used for the proper selection of a small molecule coformer regarding its ability to form either coamorphous or cocrystal systems. Finally, we consider various aspects of product development that are specifically associated with the formulation of commercial coamorphous systems as solid oral dosage forms. These include coformer selection; screening; methods of preparation; preformulation; physical stability; bioavailability; and final formulation. Through such an analysis of coamorphous API-small molecule coformer systems, against the more widely studied API-polymer dispersions and cocrystals, it is believed that the strengths and weaknesses of coamorphous systems can be better understood, leading to more efficient formulation and manufacture of such systems for enhancing oral bioavailability.


Pharmaceutical Preparations/chemistry , Small Molecule Libraries/chemistry , Solubility/drug effects , Administration, Oral , Biological Availability , Chemistry, Pharmaceutical/methods , Crystallization/methods , Polymers/chemistry , Transition Temperature , Water/chemistry , Wettability/drug effects
13.
Cryst Growth Des ; 17(10): 5349-5365, 2017 Oct 04.
Article En | MEDLINE | ID: mdl-29018305

The solid form landscape of 5-HT2a antagonist 3-(4-(benzo[d]isoxazole-3-yl)piperazin-1-yl)-2,2-dimethylpropanoic acid hydrochloride (B5HCl) proved difficult to establish. Many crystalline materials were produced by solid form screening, but few forms readily grew high quality crystals to afford a clear picture or understanding of the solid form landscape. Careful control of crystallization conditions, a range of experimental methods, computational modeling of solvate structures, and crystal structure prediction were required to see potential arrangements of the salt in its crystal forms. Structural diversity in the solid form landscape of B5HCl was apparent in the layer structures for the anhydrate polymorphs (Forms I and II), dihydrate and a family of solvates with alcohols. The alcohol solvates, which provided a distinct packing from the neat forms and the dihydrate, form layers with conserved hydrogen bonding between B5HCl and the solvent, as well as stacking of the aromatic rings. The ability of the alcohol hydrocarbon moieties to efficiently pack between the layers accounted for the difficulty in growing some solvate crystals and the inability of other solvates to crystallize altogether. Through a combination of experiment and computation, the crystallization problems, form stability, and desolvation pathways of B5HCl have been rationalized at a molecular level.

14.
Mol Pharm ; 14(11): 4052-4063, 2017 11 06.
Article En | MEDLINE | ID: mdl-28985676

One of the most commonly used formulation development tools is dissolution testing. However, for solubility enhancing formulations, a simple closed compartment conventional dissolution apparatus operating under sink conditions often fails to predict oral bioavailability and differentiate between formulations. Hence, increasing attention is being paid to combined dissolution-absorption testing. The currently available mass transport apparatuses, however, have certain limitations, the most important being the small membrane surface area, which results in slow mass transfer. In this study, a novel high surface area, flow-through absorptive dissolution testing apparatus was developed and tested on a weakly basic model drug, nevirapine. Following optimization of the experimental parameters, the mass transfer attained for a nevirapine solution was 30 times higher in 60 min as compared to a side-by-side diffusion cell. To further evaluate the system, nevirapine powder and commercial tablets were first dissolved at an acidic pH, followed by pH increase, creating a supersaturated solution. Detailed information related to the extent of supersaturation achieved in crystallizing and noncrystallizing systems could be obtained from the combined dissolution-mass transport measurements. Differences in donor cell compartment concentration-time profiles were noted for absorptive versus closed compartment conditions. It is anticipated that this approach could be a promising tool to identify solubility enabling formulations that perform optimally in vivo.


Drug Compounding , Administration, Oral , Biological Availability , Diffusion , Hydrogen-Ion Concentration , Solubility
15.
Chem Commun (Camb) ; 52(44): 7065-77, 2016 Jun 04.
Article En | MEDLINE | ID: mdl-27067116

Computational crystal structure prediction (CSP) methods can now be applied to the smaller pharmaceutical molecules currently in drug development. We review the recent uses of computed crystal energy landscapes for pharmaceuticals, concentrating on examples where they have been used in collaboration with industrial-style experimental solid form screening. There is a strong complementarity in aiding experiment to find and characterise practically important solid forms and understanding the nature of the solid form landscape.


Pharmaceutical Preparations/chemistry , Thermodynamics , Crystallization , Drug Design , Models, Molecular , Molecular Structure
16.
Drug Discov Today ; 21(6): 912-23, 2016 06.
Article En | MEDLINE | ID: mdl-26851154

Solid-form screening to identify all solid forms of an active pharmaceutical ingredient (API) has become increasingly important in ensuring the quality by design of pharmaceutical products and their manufacturing processes. However, despite considerable enlargement of the range of techniques that have been shown capable of producing novel solid forms, it is possible that practically important forms might not be found in the short timescales currently allowed for solid-form screening. Here, we report on the state-of-the-art use of computed crystal energy landscapes to complement pharmaceutical solid-form screening. We illustrate how crystal energy landscapes can help establish molecular-level understanding of the crystallization behavior of APIs and enhance the ability of solid-form screening to facilitate pharmaceutical development.


Drug Design , Pharmaceutical Preparations/chemistry , Crystallization
17.
Chem Soc Rev ; 44(23): 8619-35, 2015 Dec 07.
Article En | MEDLINE | ID: mdl-26400501

We present new facts about polymorphism based on (i) crystallographic data from the Cambridge Structural Database (CSD, a database built over 50 years of community effort), (ii) 229 solid form screens conducted at Hoffmann-La Roche and Eli Lilly and Company over the course of 8+ and 15+ years respectively and (iii) a dataset of 446 polymorphic crystals with energies and properties computed with modern DFT-d methods. We found that molecular flexibility or size has no correlation with the ability of a compound to be polymorphic. Chiral molecules, however, were found to be less prone to polymorphism than their achiral counterparts and compounds able to hydrogen bond exhibit only a slightly higher propensity to polymorphism than those which do not. Whilst the energy difference between polymorphs is usually less than 1 kcal mol(-1), conformational polymorphs are capable of differing by larger values (up to 2.5 kcal mol(-1) in our dataset). As overall statistics, we found that one in three compounds in the CSD are polymorphic whilst at least one in two compounds from the Roche and Lilly set display polymorphism with a higher estimate of up to three in four when compounds are screened intensively. Whilst the statistics provide some guidance of expectations, each compound constitutes a new challenge and prediction and realization of targeted polymorphism still remains a holy grail of materials sciences.


Crystallization , Databases, Factual , Thermodynamics
18.
Mol Pharm ; 12(8): 3069-88, 2015 Aug 03.
Article En | MEDLINE | ID: mdl-26075319

Elucidating the crystal structures, transformations, and thermodynamics of the two zwitterionic hydrates (Hy2 and HyA) of 3-(4-dibenzo[b,f][1,4]oxepin-11-yl-piperazin-1-yl)-2,2-dimethylpropanoic acid (DB7) rationalizes the complex interplay of temperature, water activity, and pH on the solid form stability and transformation pathways to three neutral anhydrate polymorphs (Forms I, II°, and III). HyA contains 1.29 to 1.95 molecules of water per DB7 zwitterion (DB7z). Removal of the essential water stabilizing HyA causes it to collapse to an amorphous phase, frequently concomitantly nucleating the stable anhydrate Forms I and II°. Hy2 is a stoichiometric dihydrate and the only known precursor to Form III, a high energy disordered anhydrate, with the level of disorder depending on the drying conditions. X-ray crystallography, solid state NMR, and H/D exchange experiments on highly crystalline phase pure samples obtained by exquisite control over crystallization, filtration, and drying conditions, along with computational modeling, provided a molecular level understanding of this system. The slow rates of many transformations and sensitivity of equilibria to exact conditions, arising from its varying static and dynamic disorder and water mobility in different phases, meant that characterizing DB7 hydration in terms of simplified hydrate classifications was inappropriate for developing this pharmaceutical.


Crystallization/methods , Dibenzoxazepines/chemistry , Pharmaceutical Preparations/chemistry , Piperazines/chemistry , Propionates/chemistry , Water/chemistry , Calorimetry, Differential Scanning , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Temperature , Thermodynamics , X-Ray Diffraction
19.
Mol Pharm ; 12(2): 484-95, 2015 Feb 02.
Article En | MEDLINE | ID: mdl-25495614

The supersaturation potential of poorly water-soluble compounds is of interest in the context of solubility enhancing formulations for enhanced bioavailability. In this regard, the amorphous "solubility", i.e., the maximum increase in solution concentration that can be obtained relative to the crystalline form, is an important parameter, albeit a very difficult one to evaluate experimentally. The goal of the current study was to develop new approaches to determine the amorphous "solubility" and to compare the experimental values to theoretical predictions. A group of six diverse model compounds was evaluated using the solvent exchange method to generate an amorphous phase in situ, determining the concentration at which the amorphous material was formed. The theoretical estimation of the amorphous "solubility" was based on the thermal properties of the crystalline and amorphous phases, the crystalline solubility, and the estimated concentration of water in the water-saturated amorphous phase. The formation of an amorphous precipitate could be captured transiently for all six compounds and hence the amorphous "solubility" determined experimentally. A comparison of the experimental amorphous "solubility" values to those calculated theoretically showed excellent agreement, in particular when the theoretical estimate method treated the precipitated phase as a supercooled liquid, and took into account heat capacity differences between the two forms. The maximum supersaturation ratio in water was found to be highly compound dependent, varying between 4 for ibuprofen and 54 for sorafenib. This information may be useful to predict improvements in biological exposure for poorly water-soluble compounds formulated as amorphous solid dispersions or other formulations that rely on supersaturation.


Chemistry, Pharmaceutical/methods , Models, Theoretical , Solubility
20.
J Med Chem ; 52(22): 6958-61, 2009 Nov 26.
Article En | MEDLINE | ID: mdl-19860433

The design, synthesis, and biological characterization of an orally active prodrug (3) of gemcitabine are described. Additionally, the identification of a novel co-crystal solid form of the compound is presented. Valproate amide 3 is orally bioavailable and releases gemcitabine into the systemic circulation after passing through the intestinal mucosa. The compound has entered clinical trials and is being evaluated as a potential new anticancer agent.


Antineoplastic Agents/chemistry , Deoxycytidine/analogs & derivatives , Prodrugs/chemistry , Prodrugs/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Transformation, Neoplastic , Colonic Neoplasms/drug therapy , Crystallization , Crystallography, X-Ray , Cytidine/chemistry , Deoxycytidine/administration & dosage , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Humans , Mice , Models, Molecular , Molecular Conformation , Prodrugs/administration & dosage , Prodrugs/chemical synthesis , Solubility , Gemcitabine
...