Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
2.
Nat Immunol ; 24(4): 676-689, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914891

RESUMEN

Mature T cells must discriminate between brief interactions with self-peptides and prolonged binding to agonists. The kinetic proofreading model posits that certain T-cell antigen receptor signaling nodes serve as molecular timers to facilitate such discrimination. However, the physiological significance of this regulatory mechanism and the pathological consequences of disrupting it are unknown. Here we report that accelerating the normally slow phosphorylation of the linker for activation of T cells (LAT) residue Y136 by introducing an adjacent Gly135Asp alteration (LATG135D) disrupts ligand discrimination in vivo. The enhanced self-reactivity of LATG135D T cells triggers excessive thymic negative selection and promotes T-cell anergy. During Listeria infection, LATG135D T cells expand more than wild-type counterparts in response to very weak stimuli but display an imbalance between effector and memory responses. Moreover, despite their enhanced engagement of central and peripheral tolerance mechanisms, mice bearing LATG135D show features associated with autoimmunity and immunopathology. Our data reveal the importance of kinetic proofreading in balancing tolerance and immunity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Linfocitos T , Ratones , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos , Receptores de Antígenos de Linfocitos T/metabolismo , Activación de Linfocitos , Fosforilación , Fosfoproteínas/genética
3.
Can J Physiol Pharmacol ; 100(8): 763-771, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35531905

RESUMEN

Two recent clinical trials, using sodium glucose cotransporter (SGLT2) or endothelin-A receptor (ET-A) blocker, reported the first efficacious treatments in 18 years to slow progression of diabetic kidney disease (DKD). We hypothesized that combined inhibition of SGLT2 and ET-A receptor may confer greater protection against renal injury than either agent alone. Uninephrectomized male db/db mice were randomized to four groups: vehicle, SGLT2 inhibitor (dapagliflozin (dapa), 1 mg/kg/day), ET-A blocker (atrasentan (atra), 5 mg/kg/day), or dual treatment from 10 weeks until 22 weeks of age. At 10 weeks of age, no differences were observed in body weight, blood glucose or urinary albumin excretion among the four groups. At 16 and 22 weeks of age, body weight was lower and blood glucose levels higher in the vehicle and atra groups compared with dapa- and dual-treated groups. No notable differences were observed among the four groups in urinary albumin excretion at weeks 16 and 22. Histological analysis showed mild glomerulosclerosis and tubular injury (<5%) in all four groups with reduced glomerulosclerosis in the dual treatment group compared with vehicle. Individual or combined treatment with an SGLT2 inhibitor and (or) an ET-A antagonist did not confer renoprotective effects in this model.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Masculino , Ratones , Albúminas/análisis , Albúminas/farmacología , Albúminas/uso terapéutico , Compuestos de Bencidrilo/farmacología , Glucemia/análisis , Peso Corporal , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/prevención & control , Modelos Animales de Enfermedad , Glucosa/farmacología , Riñón , Receptor de Endotelina A , Transportador 2 de Sodio-Glucosa , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
4.
Kidney Int ; 102(1): 58-77, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483525

RESUMEN

Thrombotic microangiopathy (TMA) in the kidney represents the most severe manifestation of kidney microvascular endothelial injury. Despite the source of the inciting event, the diverse clinical forms of kidney TMA share dysregulation of endothelial cell transcripts and complement activation. Here, we show that endothelial-specific knockdown of Krüppel-Like Factor 4 (Klf4)ΔEC, an anti-inflammatory and antithrombotic zinc-finger transcription factor, increases the susceptibility to glomerular endothelial injury and microangiopathy in two genetic murine models that included endothelial nitric oxide synthase knockout mice and aged mice (52 weeks), as well as in a pharmacologic model of TMA using Shiga-toxin 2. In all models, Klf4ΔEC mice exhibit increased pro-thrombotic and pro-inflammatory transcripts, as well as increased complement factors C3 and C5b-9 deposition and histologic features consistent with subacute TMA. Interestingly, complement activation in Klf4ΔEC mice was accompanied by reduced expression of a key KLF4 transcriptional target and membrane bound complement regulatory gene, Cd55. To assess a potential mechanism by which KLF4 might regulate CD55 expression, we performed in silico chromatin immunoprecipitation enrichment analysis of the CD55 promotor and found KLF4 binding sites upstream from the CD55 transcription start site. Using patient-derived kidney biopsy specimens, we found glomerular expression of KLF4 and CD55 was reduced in patients with TMA as compared to control biopsies of the unaffected pole of patient kidneys removed due to kidney cancer. Thus, our data support that endothelial Klf4 is necessary for maintenance of a quiescent glomerular endothelial phenotype and its loss increases susceptibility to complement activation and induction of prothrombotic and pro-inflammatory pathways.


Asunto(s)
Factor 4 Similar a Kruppel , Microangiopatías Trombóticas , Animales , Activación de Complemento , Proteínas del Sistema Complemento/metabolismo , Endotelio , Humanos , Glomérulos Renales/patología , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Microangiopatías Trombóticas/patología
5.
Transplant Proc ; 54(1): 193-196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35012763

RESUMEN

Checkpoint inhibitors decrease the progression of many cancers. However, the experience in immunosuppressed patients is limited, with reports of possible serious adverse events. We present a heart transplant recipient treated with pembrolizumab for metastatic melanoma who developed fatal rejection. The patient was a 29 year-old man who underwent heart transplantation at the age of 10 years for congenital heart disease. Seventeen years after transplant, he was diagnosed with scalp melanoma pT3a, N2a, M0, Stage IIIA, positive for BRAF V600E mutation treated with excision, which metastasized to his lungs and brain a year later. Dabrafenib and trametinib were started with transient response. Additional options and their risks were discussed, and pembrolizumab was started 4 months later due to the incomplete response to previous therapy. Five days after initiation the patient presented with moderate cellular rejection and possible antibody mediated rejection (ISHLT Grade 2R, pAMR 1H). Pembrolizumab was discontinued, and he was treated with steroids. Seven months later he presented in cardiogenic shock and severe coronary allograft vasculopathy. Biopsy was negative for cellular rejection, but suspicious for antibody mediated rejection (ISHLT Grade 0R, pAMR 1H), and he had a new serum alloantibody. Despite steroids and plasmapheresis he remained in refractory cardiogenic shock and died of cardiac arrest.


Asunto(s)
Trasplante de Corazón , Melanoma , Adulto , Aloinjertos , Anticuerpos Monoclonales Humanizados , Niño , Rechazo de Injerto , Trasplante de Corazón/efectos adversos , Humanos , Masculino , Melanoma/tratamiento farmacológico
6.
Am J Physiol Renal Physiol ; 322(2): F175-F192, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34927449

RESUMEN

Ift88 gene mutations cause primary cilia loss and polycystic kidney disease (PKD) in mice. Nephron intraflagellar transport protein 88 (Ift88) knockout (KO) at 2 mo postnatal does not affect renal histology at 4 mo postnatal and causes PKD only in males by 11 mo postnatal. To identify factors associated with PKD development, kidneys from 4-mo-old male and female control and Ift88 KO mice underwent transcriptomic, proteomic, Western blot, metabolomic, and lipidomic analyses. mRNAs involved in extracellular matrix (ECM) synthesis and degradation were selectively upregulated in male KO mice. Proteomic analysis was insufficiently sensitive to detect most ECM components, while Western blot analysis paradoxically revealed reduced fibronectin and collagen type I in male KO mice. Only male KO mice had upregulated mRNAs encoding fibrinogen subunits and receptors for vascular endothelial growth factor and platelet-derived growth factor; period 2, period 3, and nuclear receptor subfamily 1 group D member 1 clock mRNAs were selectively decreased in male KO mice. Proteomic, metabolomic, and lipidomic analyses detected a relative (vs. the same-sex control) decrease in factors involved in fatty acid ß-oxidation in female KO mice, while increased or unchanged levels in male KO mice, including medium-chain acyl-CoA dehydrogenase, 3-hydroxybutyrate, and acylcarnitine. Three putative mRNA biomarkers of cystogenesis in male Ift88 KO mice (similar control levels between sexes and uniquely altered by KO in males) were identified, including high levels (fibrinogen α-chain and stromal cell-derived factor 2-like 1) and low levels (BTG3-associated nuclear protein) in male KO mice. These findings suggest that relative alterations in renal ECM metabolism, fatty acid ß-oxidation, and other pathways precede cystogenesis in Ift88 KO mice. In addition, potential novel biomarkers of cystogenesis in Ift88 KO mice have been identified.NEW & NOTEWORTHY Male, but not female, mice with nephron intraflagellar transport protein 88 (Ift88) gene knockout (KO) develop polycystic kidneys by ∼1 yr postnatal. We performed multiomic analysis of precystic male and female Ift88 KO and control kidneys. Precystic male Ift88 KO mice exhibited differential alterations (vs. females) in mRNA, proteins, metabolites, and/or lipids associated with renal extracellular matrix metabolism, fatty acid ß-oxidation, circadian rhythm, and other pathways. These findings suggest targets for evaluation in the pathogenesis of Ift88 KO polycystic kidneys.


Asunto(s)
Nefronas/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Proteínas Supresoras de Tumor/deficiencia , Animales , Femenino , Perfilación de la Expresión Génica , Lipidómica , Masculino , Metaboloma , Ratones Endogámicos C57BL , Ratones Noqueados , Nefronas/patología , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Proteoma , Proteómica , Factores Sexuales , Transducción de Señal , Factores de Tiempo , Transcriptoma , Proteínas Supresoras de Tumor/genética
7.
Diabetes ; 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34957485

RESUMEN

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2KO/KI, Sco2KI/KI), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2KO/KI and Sco2KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2KO/KI;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.

8.
Kidney Int ; 100(6): 1250-1267, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634362

RESUMEN

Loss of fatty acid ß-oxidation (FAO) in the proximal tubule is a critical mediator of acute kidney injury and eventual fibrosis. However, transcriptional mediators of FAO in proximal tubule injury remain understudied. Krüppel-like factor 15 (KLF15), a highly enriched zinc-finger transcription factor in the proximal tubule, was significantly reduced in proximal tubule cells after aristolochic acid I (AAI) treatment, a proximal tubule-specific injury model. Proximal tubule specific knockout of Klf15 exacerbated proximal tubule injury and kidney function decline compared to control mice during the active phase of AAI treatment, and after ischemia-reperfusion injury. Furthermore, along with worsening proximal tubule injury and kidney function decline, knockout mice exhibited increased kidney fibrosis as compared to control mice during the remodeling phase after AAI treatment. RNA-sequencing of kidney cortex demonstrated increased transcripts involved in immune system and integrin signaling pathways and decreased transcripts encompassing metabolic pathways, specifically FAO, and PPARα signaling, in knockout versus control mice after AAI treatment. In silico and experimental chromatin immunoprecipitation studies collectively demonstrated that KLF15 occupied the promoter region of key FAO genes, CPT1A and ACAA2, in close proximity to transcription factor PPARα binding sites. While the loss of Klf15 reduced the expression of Cpt1a and Acaa2 and led to compromised FAO, induction of KLF15 partially rescued loss of FAO in AAI-treated cells. Klf15, Ppara, Cpt1a, and Acaa2 expression was also decreased in other mouse kidney injury models. Tubulointerstitial KLF15 independently correlated with eGFR, PPARA and CPT1A appearance in expression arrays from human kidney biopsies. Thus, proximal tubule-specific loss of Klf15 exacerbates acute kidney injury and fibrosis, likely due to loss of interaction with PPARα leading to loss of FAO gene transcription.


Asunto(s)
Lesión Renal Aguda , Ácidos Grasos/metabolismo , Factores de Transcripción de Tipo Kruppel , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Animales , Riñón , Túbulos Renales Proximales , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Noqueados
9.
Diabetes ; 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702781

RESUMEN

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2 KO/KI , Sco2 KI/KI ), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2 KO/KI and Sco2 KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2 KO/KI ;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.

10.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074766

RESUMEN

Altered cellular metabolism in kidney proximal tubule (PT) cells plays a critical role in acute kidney injury (AKI). The transcription factor Krüppel-like factor 6 (KLF6) is rapidly and robustly induced early in the PT after AKI. We found that PT-specific Klf6 knockdown (Klf6PTKD) is protective against AKI and kidney fibrosis in mice. Combined RNA and chromatin immunoprecipitation sequencing analysis demonstrated that expression of genes encoding branched-chain amino acid (BCAA) catabolic enzymes was preserved in Klf6PTKD mice, with KLF6 occupying the promoter region of these genes. Conversely, inducible KLF6 overexpression suppressed expression of BCAA genes and exacerbated kidney injury and fibrosis in mice. In vitro, injured cells overexpressing KLF6 had similar decreases in BCAA catabolic gene expression and were less able to utilize BCAA. Furthermore, knockdown of BCKDHB, which encodes one subunit of the rate-limiting enzyme in BCAA catabolism, resulted in reduced ATP production, while treatment with BCAA catabolism enhancer BT2 increased metabolism. Analysis of kidney function, KLF6, and BCAA gene expression in human chronic kidney disease patients showed significant inverse correlations between KLF6 and both kidney function and BCAA expression. Thus, targeting KLF6-mediated suppression of BCAA catabolism may serve as a key therapeutic target in AKI and kidney fibrosis.


Asunto(s)
Lesión Renal Aguda/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Riñón/lesiones , Riñón/metabolismo , Factor 6 Similar a Kruppel/metabolismo , Lesión Renal Aguda/patología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Inflamación , Riñón/patología , Túbulos Renales Proximales/metabolismo , Factor 6 Similar a Kruppel/genética , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Factores de Transcripción/metabolismo
11.
J Am Soc Nephrol ; 32(7): 1666-1681, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33952630

RESUMEN

BACKGROUND: Identification of target antigens PLA2R, THSD7A, NELL1, or Semaphorin-3B can explain the majority of cases of primary membranous nephropathy (MN). However, target antigens remain unidentified in 15%-20% of patients. METHODS: A multipronged approach, using traditional and modern technologies, converged on a novel target antigen, and capitalized on the temporal variation in autoantibody titer for biomarker discovery. Immunoblotting of human glomerular proteins followed by differential immunoprecipitation and mass spectrometric analysis was complemented by laser-capture microdissection followed by mass spectrometry, elution of immune complexes from renal biopsy specimen tissue, and autoimmune profiling on a protein fragment microarray. RESULTS: These approaches identified serine protease HTRA1 as a novel podocyte antigen in a subset of patients with primary MN. Sera from two patients reacted by immunoblotting with a 51-kD protein within glomerular extract and with recombinant human HTRA1, under reducing and nonreducing conditions. Longitudinal serum samples from these patients seemed to correlate with clinical disease activity. As in PLA2R- and THSD7A- associated MN, anti-HTRA1 antibodies were predominantly IgG4, suggesting a primary etiology. Analysis of sera collected during active disease versus remission on protein fragment microarrays detected significantly higher titers of anti-HTRA1 antibody in active disease. HTRA1 was specifically detected within immune deposits of HTRA1-associated MN in 14 patients identified among three cohorts. Screening of 118 "quadruple-negative" (PLA2R-, THSD7A-, NELL1-, EXT2-negative) patients in a large repository of MN biopsy specimens revealed a prevalence of 4.2%. CONCLUSIONS: Conventional and more modern techniques converged to identify serine protease HTRA1 as a target antigen in MN.

12.
Am J Transplant ; 20(12): 3308-3318, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32476272

RESUMEN

The XVth Banff Conference on Allograft Pathology meeting was held on September 23-27, 2019, in Pittsburgh, Pennsylvania, USA. During this meeting, two main topics in cardiac transplant pathology were addressed: (a) Improvement of endomyocardial biopsy (EMB) accuracy for the diagnosis of rejection and other significant injury patterns, and (b) the orphaned lesion known as Quilty effect or nodular endocardial infiltrates. Molecular technologies have evolved in recent years, deciphering pathophysiology of cardiac rejection. Diagnostically, it is time to integrate the histopathology of EMBs and molecular data. The goal is to incorporate molecular pathology, performed on the same paraffin block as a companion test for histopathology, to yield more accurate and objective EMB interpretation. Application of digital image analysis from hematoxylin and eosin (H&E) stain to multiplex labeling is another means of extracting additional information from EMBs. New concepts have emerged exploring the multifaceted significance of myocardial injury, minimal rejection patterns supported by molecular profiles, and lesions of arteriolitis/vasculitis in the setting of T cell-mediated rejection (TCMR) and antibody-mediated rejection (AMR). The orphaned lesion known as Quilty effect or nodular endocardial infiltrates. A state-of-the-art session with historical aspects and current dilemmas was reviewed, and possible pathogenesis proposed, based on advances in immunology to explain conflicting data. The Quilty effect will be the subject of a multicenter project to explore whether it functions as a tertiary lymphoid organ.


Asunto(s)
Rechazo de Injerto , Trasplante de Corazón , Miocardio , Aloinjertos , Biopsia , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología , Trasplante de Corazón/efectos adversos , Humanos , Miocardio/patología , Pennsylvania
13.
Clin Transplant ; 32(12): e13441, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30387908

RESUMEN

Prior studies demonstrate poor agreement among pathologists' interpretation of kidney biopsy slides. Reliability of representative images of these slides uploaded to the United Network of Organ Sharing (UNOS) web portal for clinician review has not been studied. We hypothesized high agreement among pathologists' image interpretation, since static images eliminate variation induced by viewing different areas of movable slides. To test our hypothesis, we compared the assessments of UNOS-uploaded images recorded in standardized forms by three pathologists. We selected 100 image sets, each having at least two images from kidneys of deceased donors. Weighted Cohen's kappa was used for inter-rater agreement. Mean (SD) donor age was 50 (13). Acute tubular injury had kappas of 0.12, 0.14, and 0.19; arteriolar hyalinosis 0.16, 0.27, and 0.38; interstitial inflammation 0.30, 0.33, and 0.49; interstitial fibrosis 0.28, 0.32, and 0.67; arterial intimal fibrosis 0.34, 0.42, and 0.59; tubular atrophy 0.35, 0.41, and 0.52; glomeruli thrombi 0.32, 0.53, and 0.85; and global glomerulosclerosis 0.68, 0.70, and 0.77. Pathologists' agreement demonstrated kappas of 0.12 to 0.77. The lower values raise concern about the reliability of using images. Although further research is needed to understand how uploaded images are used clinically, the field may consider higher-quality standards for biopsy photomicrographs.


Asunto(s)
Bases de Datos Factuales , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/patología , Bancos de Tejidos/organización & administración , Donantes de Tejidos/provisión & distribución , Obtención de Tejidos y Órganos/normas , Biopsia , Femenino , Humanos , Riñón/diagnóstico por imagen , Trasplante de Riñón , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
14.
Circ Heart Fail ; 11(8): e004759, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30354559

RESUMEN

BACKGROUND: Cardiac allograft vasculopathy (CAV) remains an important source of mortality after heart transplant. The aim of our study was to identify structural and microvasculature changes in severe CAV. METHODS AND RESULTS: The study group included heart transplant recipients with severe CAV who underwent retransplantation (severe CAV, n=20). Control groups included time from transplant matched cardiac transplant recipients without CAV (transplant control, n=20), severe ischemic cardiomyopathy patients requiring left ventricular assist device implantation (ischemic control, n=18), and normal hearts donated for research (donor control, n=10). We collected baseline demographic information, echocardiography data, and performed histopathologic examination of myocardial microvasculature. Echocardiographic features of severe CAV included lack of eccentric remodeling and presence of significant diastolic dysfunction. In contrast, diastolic function was preserved in transplant control subjects. Histopathologic examination showed increased interstitial fibrosis among severe CAV, transplant controls, and ischemic control patients. Compared with transplant controls, severe CAV subjects had reduced capillary density and increased capillary wall thickness ( P<0.05). CONCLUSIONS: Our results suggest that the marked diastolic dysfunction and resultant symptoms in patients with severe CAV may be secondary to the loss of microvasculature and remodeling of remaining microvessels rather than a consequence of interstitial fibrosis. The clinical significance and potential therapeutic implications of these unique microvasculature characteristics warrant further investigation.


Asunto(s)
Capilares/patología , Enfermedad de la Arteria Coronaria/etiología , Trasplante de Corazón/efectos adversos , Remodelación Vascular , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda , Aloinjertos , Biopsia , Capilares/fisiopatología , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/patología , Enfermedad de la Arteria Coronaria/fisiopatología , Circulación Coronaria , Diástole , Ecocardiografía Doppler de Pulso , Humanos , Microcirculación , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Factores de Tiempo , Resultado del Tratamiento , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
15.
Kidney Int Rep ; 3(5): 1128-1134, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30197979

RESUMEN

INTRODUCTION: Staphylococcal infection-related glomerulonephritis (GN) has been shown to represent a unique form of infection-related GN that contains IgA-dominant deposits and is often seen concurrently with the bacterial infection. Biopsies commonly reveal an endocapillary proliferative and/or exudative or mesangial proliferative GN. Rare cases have been reported to show cryoglobulin-like features, including hyaline pseudothrombi and wireloop deposits; however, detailed characterization of these cases is lacking. METHODS: The pathology archives from the University of Utah and Sharp Memorial Hospital were reviewed from January 2016 to September 2017 in search of cases with GN containing IgA-dominant deposits and features of cryoglobulinemia. RESULTS: Of 1965 native kidney biopsies, 5 showed IgA-dominant GN with cryoglobulinemic features. All patients had active staphylococcal infections at the time of biopsy. All presented with acute kidney injury (serum creatinine range: 1.7-6 mg/dl), and all had proteinuria and hematuria. All biopsies showed exudative GN, and 4 biopsies had focal crescents. All had focally prominent hyaline pseudothrombi with or without wireloop deposits, and all showed co-dominant staining for IgA and C3 on immunofluorescence microscopy. Serologic testing for cryoglobulinemia was performed in 3 patients and was transiently positive in 1 patient. Four patients required hemodialysis at last follow-up, whereas 1 patient returned to baseline kidney function. CONCLUSION: IgA-dominant GN with cryoglobulinemic features is an uncommon but severe form of glomerular injury in patients with staphylococcal infections. Four of 5 patients had crescentic glomerular injuries, all of whom required hemodialysis at last follow-up. Patients with IgA-dominant GN with features of cryoglobulinemia should be evaluated for active staphylococcal infection.

16.
J Am Soc Nephrol ; 29(10): 2529-2545, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30143559

RESUMEN

BACKGROUND: Podocyte injury is the hallmark of proteinuric kidney diseases, such as FSGS and minimal change disease, and destabilization of the podocyte's actin cytoskeleton contributes to podocyte dysfunction in many of these conditions. Although agents, such as glucocorticoids and cyclosporin, stabilize the actin cytoskeleton, systemic toxicity hinders chronic use. We previously showed that loss of the kidney-enriched zinc finger transcription factor Krüppel-like factor 15 (KLF15) increases susceptibility to proteinuric kidney disease and attenuates the salutary effects of retinoic acid and glucocorticoids in the podocyte. METHODS: We induced podocyte-specific KLF15 in two proteinuric murine models, HIV-1 transgenic (Tg26) mice and adriamycin (ADR)-induced nephropathy, and used RNA sequencing of isolated glomeruli and subsequent enrichment analysis to investigate pathways mediated by podocyte-specific KLF15 in Tg26 mice. We also explored in cultured human podocytes the potential mediating role of Wilms Tumor 1 (WT1), a transcription factor critical for podocyte differentiation. RESULTS: In Tg26 mice, inducing podocyte-specific KLF15 attenuated podocyte injury, glomerulosclerosis, tubulointerstitial fibrosis, and inflammation, while improving renal function and overall survival; it also attenuated podocyte injury in ADR-treated mice. Enrichment analysis of RNA sequencing from the Tg26 mouse model shows that KLF15 induction activates pathways involved in stabilization of actin cytoskeleton, focal adhesion, and podocyte differentiation. Transcription factor enrichment analysis, with further experimental validation, suggests that KLF15 activity is in part mediated by WT1. CONCLUSIONS: Inducing podocyte-specific KLF15 attenuates kidney injury by directly and indirectly upregulating genes critical for podocyte differentiation, suggesting that KLF15 induction might be a potential strategy for treating proteinuric kidney disease.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Enfermedades Renales/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Factores de Transcripción/biosíntesis , Citoesqueleto de Actina/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Adhesiones Focales , Técnicas de Silenciamiento del Gen , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Enfermedades Renales/genética , Enfermedades Renales/patología , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Transgénicos , Nefrosis Lipoidea/genética , Nefrosis Lipoidea/metabolismo , Nefrosis Lipoidea/patología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Podocitos/patología , Proteinuria/genética , Proteinuria/patología , Factores de Transcripción/genética , Regulación hacia Arriba , Proteínas WT1/antagonistas & inhibidores , Proteínas WT1/genética , Proteínas WT1/metabolismo
17.
Diabetes ; 67(11): 2420-2433, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30115650

RESUMEN

Mitochondrial injury is uniformly observed in several murine models as well as in individuals with diabetic kidney disease (DKD). Although emerging evidence has highlighted the role of key transcriptional regulators in mitochondrial biogenesis, little is known about the regulation of mitochondrial cytochrome c oxidase assembly in the podocyte under diabetic conditions. We recently reported a critical role of the zinc finger Krüppel-like factor 6 (KLF6) in maintaining mitochondrial function and preventing apoptosis in a proteinuric murine model. In this study, we report that podocyte-specific knockdown of Klf6 increased the susceptibility to streptozotocin-induced DKD in the resistant C57BL/6 mouse strain. We observed that the loss of KLF6 in podocytes reduced the expression of synthesis of cytochrome c oxidase 2 with resultant increased mitochondrial injury, leading to activation of the intrinsic apoptotic pathway under diabetic conditions. Conversely, mitochondrial injury and apoptosis were significantly attenuated with overexpression of KLF6 in cultured human podocytes under hyperglycemic conditions. Finally, we observed a significant reduction in glomerular and podocyte-specific expression of KLF6 in human kidney biopsies with progression of DKD. Collectively, these data suggest that podocyte-specific KLF6 is critical to preventing mitochondrial injury and apoptosis under diabetic conditions.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Factor 6 Similar a Kruppel/metabolismo , Mitocondrias/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Animales , Apoptosis/fisiología , Presión Sanguínea/fisiología , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/patología , Tasa de Filtración Glomerular/fisiología , Humanos , Riñón/metabolismo , Riñón/patología , Factor 6 Similar a Kruppel/genética , Ratones , Mitocondrias/patología , Podocitos/patología , Proteinuria/patología
19.
JCI Insight ; 3(12)2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29925693

RESUMEN

Pathologic glomerular epithelial cell (GEC) hyperplasia is characteristic of both rapidly progressive glomerulonephritis (RPGN) and subtypes of focal segmental glomerulosclerosis (FSGS). Although initial podocyte injury resulting in activation of STAT3 signals GEC proliferation in both diseases, mechanisms regulating this are unknown. Here, we show that the loss of Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, enhances GEC proliferation in both RPGN and FSGS due to dysregulated STAT3 signaling. We observed that podocyte-specific knockdown of Klf4 (C57BL/6J) increased STAT3 signaling and exacerbated crescent formation after nephrotoxic serum treatment. Interestingly, podocyte-specific knockdown of Klf4 in the FVB/N background alone was sufficient to activate STAT3 signaling, resulting in FSGS with extracapillary proliferation, as well as renal failure and reduced survival. In cultured podocytes, loss of KLF4 resulted in STAT3 activation and cell-cycle reentry, leading to mitotic catastrophe. This triggered IL-6 release into the supernatant, which activated STAT3 signaling in parietal epithelial cells. Conversely, either restoration of KLF4 expression or inhibition of STAT3 signaling improved survival in KLF4-knockdown podocytes. Finally, human kidney biopsy specimens with RPGN exhibited reduced KLF4 expression with a concomitant increase in phospho-STAT3 expression as compared with controls. Collectively, these results suggest the essential role of KLF4/STAT3 signaling in podocyte injury and its regulation of aberrant GEC proliferation.


Asunto(s)
Células Epiteliales/metabolismo , Glomérulos Renales/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Ciclo Celular , Proliferación Celular , Modelos Animales de Enfermedad , Células Epiteliales/patología , Glomeruloesclerosis Focal y Segmentaria , Humanos , Interleucina-6 , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glomérulos Renales/patología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nefritis/sangre , Podocitos/patología , Factores de Transcripción
20.
Hum Pathol ; 71: 109-116, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29079181

RESUMEN

Immune complex deposition in kidney allografts can include both recurrent and de novo processes. Recurrent glomerulonephritis is a well-recognized phenomenon and has been shown to be a common cause of allograft failure. De novo immune complex-mediated disease remains relatively poorly characterized, likely owing to the less frequent use of immunofluorescence and electron microscopy in the transplant setting. We performed a retrospective review of kidney allograft biopsies showing glomerular immune complex deposition. Cases with de novo deposits were identified and further organized into two groups depending on whether the immune complex deposition could be clinically and/or histologically classified. Thirty-two patients with de novo immune complex deposition were identified over a 7-year period. A broad range of immune complex-mediated injuries were observed, the majority (63%) of which could be readily classified either clinically or histologically. These included cases of membranous glomerulonephropathy, IgA nephropathy, infection-related glomerulonephritis and glomerulonephritis related to an underlying autoimmune process. A smaller subset of patients (37%) demonstrated immune complex deposition that was difficult to histologically or clinically classify. These patients typically showed mild mesangial immune complex deposition with co-dominant IgG and IgM staining by immunofluorescence microscopy. The presence of concurrent antibody-mediated rejection and donor-specific antibody positivity was significantly higher in the unclassifiable group. The significance of these deposits and their possible relationship to allograft rejection deserves further investigation.


Asunto(s)
Glomerulonefritis/inmunología , Enfermedades del Complejo Inmune/patología , Trasplante de Riñón , Adulto , Anciano , Aloinjertos , Complejo Antígeno-Anticuerpo/inmunología , Femenino , Humanos , Enfermedades del Complejo Inmune/inmunología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...