Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4812, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558654

RESUMEN

Branched chain amino acid (BCAA) catabolic impairments have been implicated in several diseases. Branched chain ketoacid dehydrogenase (BCKDH) controls the rate limiting step in BCAA degradation, the activity of which is inhibited by BCKDH kinase (BDK)-mediated phosphorylation. Screening efforts to discover BDK inhibitors led to identification of thiophene PF-07208254, which improved cardiometabolic endpoints in mice. Structure-activity relationship studies led to identification of a thiazole series of BDK inhibitors; however, these inhibitors did not improve metabolism in mice upon chronic administration. While the thiophenes demonstrated sustained branched chain ketoacid (BCKA) lowering and reduced BDK protein levels, the thiazoles increased BCKAs and BDK protein levels. Thiazoles increased BDK proximity to BCKDH-E2, whereas thiophenes reduced BDK proximity to BCKDH-E2, which may promote BDK degradation. Thus, we describe two BDK inhibitor series that possess differing attributes regarding BDK degradation or stabilization and provide a mechanistic understanding of the desirable features of an effective BDK inhibitor.


Asunto(s)
Aminoácidos de Cadena Ramificada , Tiofenos , Ratones , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Fosforilación , Tiofenos/farmacología , Oxidorreductasas/metabolismo
2.
J Biol Chem ; 299(3): 102959, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36717078

RESUMEN

The mammalian mitochondrial branched-chain ketoacid dehydrogenase (BCKD) complex is a multienzyme complex involved in the catabolism of branched-chain amino acids. BCKD is regulated by the BCKD kinase, or BCKDK, which binds to the E2 subunit of BCKD, phosphorylates its E1 subunit, and inhibits enzymatic activity. Inhibition of the BCKD complex results in increased levels of branched-chain amino acids and branched-chain ketoacids, and this buildup has been associated with heart failure, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. To find BCKDK inhibitors for potential treatment of these diseases, we performed both NMR and virtual fragment screening and identified tetrazole-bearing fragments that bind BCKDK at multiple sites. Through structure-based virtual screening expanding from these fragments, the angiotensin receptor blocker class antihypertension drugs and angiotensin receptor blocker-like compounds were discovered to be potent BCKDK inhibitors, suggesting potential new avenues for heart failure treatment combining BCKDK inhibition and antihypertension.


Asunto(s)
3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida) , Antagonistas de Receptores de Angiotensina , Humanos , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Complejos Multienzimáticos/metabolismo , Insuficiencia Cardíaca , Hipertensión
3.
J Lipid Res ; 61(8): 1192-1202, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32482718

RESUMEN

Lysosomal acid lipase (LAL) is a serine hydrolase that hydrolyzes cholesteryl ester (CE) and TGs delivered to the lysosomes into free cholesterol and fatty acids. LAL deficiency due to mutations in the LAL gene (LIPA) results in accumulation of TGs and cholesterol esters in various tissues of the body leading to pathological conditions such as Wolman's disease and CE storage disease (CESD). Here, we present the first crystal structure of recombinant human LAL (HLAL) to 2.6 Å resolution in its closed form. The crystal structure was enabled by mutating three of the six potential glycosylation sites. The overall structure of HLAL closely resembles that of the evolutionarily related human gastric lipase (HGL). It consists of a core domain belonging to the classical α/ß hydrolase-fold family with a classical catalytic triad (Ser-153, His-353, Asp-324), an oxyanion hole, and a "cap" domain, which regulates substrate entry to the catalytic site. Most significant structural differences between HLAL and HGL exist at the lid region. Deletion of the short helix, 238NLCFLLC244, at the lid region implied a possible role in regulating the highly hydrophobic substrate binding site from self-oligomerization during interfacial activation. We also performed molecular dynamic simulations of dog gastric lipase (lid-open form) and HLAL to gain insights and speculated a possible role of the human mutant, H274Y, leading to CESD.


Asunto(s)
Enfermedad de Acumulación de Colesterol Éster/enzimología , Esterol Esterasa/química , Esterol Esterasa/metabolismo , Enfermedad de Acumulación de Colesterol Éster/genética , Cristalografía por Rayos X , Glicosilación , Humanos , Modelos Moleculares , Mutación , Dominios Proteicos , Esterol Esterasa/genética
4.
J Med Chem ; 61(16): 7273-7288, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30036059

RESUMEN

Studies on indole-3-carboxylic acid derivatives as direct activators of human adenosine monophosphate-activated protein kinase (AMPK) α1ß1γ1 isoform have culminated in the identification of PF-06409577 (1), PF-06885249 (2), and PF-06679142 (3) as potential clinical candidates. Compounds 1-3 are primarily cleared in animals and humans via glucuronidation. Herein, we describe the biosynthetic preparation, purification, and structural characterization of the glucuronide conjugates of 1-3. Spectral characterization of the purified glucuronides M1, M2, and M3 indicated that they were acyl glucuronide derivatives. In vitro pharmacological evaluation revealed that all three acyl glucuronides retained selective activation of ß1-containing AMPK isoforms. Inhibition of de novo lipogenesis with representative parent carboxylic acids and their respective acyl glucuronide conjugates in human hepatocytes demonstrated their propensity to activate cellular AMPK. Cocrystallization of the AMPK α1ß1γ1 isoform with 1-3 and M1-M3 provided molecular insights into the structural basis for AMPK activation by the glucuronide conjugates.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Indoles/química , Indoles/metabolismo , Lipogénesis/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/química , Animales , Células Cultivadas , Cristalización/métodos , Activación Enzimática/efectos de los fármacos , Glucurónidos/química , Glucurónidos/metabolismo , Glucurónidos/farmacocinética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Indoles/farmacología , Macaca fascicularis , Espectroscopía de Resonancia Magnética , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Ratas Wistar , Uridina Difosfato Ácido Glucurónico/farmacología
5.
J Med Chem ; 61(6): 2372-2383, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29466005

RESUMEN

Optimization of the pharmacokinetic (PK) properties of a series of activators of adenosine monophosphate-activated protein kinase (AMPK) is described. Derivatives of the previously described 5-aryl-indole-3-carboxylic acid clinical candidate (1) were examined with the goal of reducing glucuronidation rate and minimizing renal excretion. Compounds 10 (PF-06679142) and 14 (PF-06685249) exhibited robust activation of AMPK in rat kidneys as well as desirable oral absorption, low plasma clearance, and negligible renal clearance in preclinical species. A correlation of in vivo renal clearance in rats with in vitro uptake by human and rat renal organic anion transporters (human OAT/rat Oat) was identified. Variation of polar functional groups was critical to mitigate active renal clearance mediated by the Oat3 transporter. Modification of either the 6-chloroindole core to a 4,6-difluoroindole or the 5-phenyl substituent to a substituted 5-(3-pyridyl) group provided improved metabolic stability while minimizing propensity for active transport by OAT3.


Asunto(s)
Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Activadores de Enzimas/síntesis química , Activadores de Enzimas/farmacología , Indoles/síntesis química , Indoles/farmacología , Animales , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/farmacocinética , Humanos , Indoles/farmacocinética , Absorción Intestinal , Riñón/efectos de los fármacos , Riñón/enzimología , Masculino , Modelos Moleculares , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Ratas , Ratas Wistar , Relación Estructura-Actividad
6.
Methods Mol Biol ; 1732: 29-55, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480467

RESUMEN

Protein-ligand interactions can be evaluated by a number of different biophysical methods. Here we describe some of the experimental methods that we have used to generate AMPK protein reagents and characterize its interactions with direct synthetic activators. Recombinant heterotrimeric AMPK complexes were generated using standard molecular biology methods by expression either in insect cells via infection with three different viruses or more routinely in Escherichia coli with a tricistronic expression vector. Hydrogen/deuterium exchange (HDX) coupled with mass spectrometry was used to probe protein conformational changes and potential binding sites of activators on AMPK. X-ray crystallographic studies were carried out on crystals of AMPK with bound ligands to reveal detailed molecular interactions formed by AMPK activators at near-atomic resolution. In order to gain insights into the mechanism of enzyme activation and to probe the effects of AMPK activators on kinetic parameters such as Michaelis-Menten constant (K m ) or maximal reaction velocity (V max), we performed classical enzyme kinetic studies using radioactive 33P-ATP-based filter assay. Equilibrium dissociation constants (K D ) and on and off rates of ligand binding were obtained by application of surface plasmon resonance (SPR) technique.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Medición de Intercambio de Deuterio/métodos , Activadores de Enzimas/química , Resonancia por Plasmón de Superficie/métodos , Proteínas Quinasas Activadas por AMP/aislamiento & purificación , Animales , Sitios de Unión , Cristalografía por Rayos X , Medición de Intercambio de Deuterio/instrumentación , Activación Enzimática , Pruebas de Enzimas/instrumentación , Pruebas de Enzimas/métodos , Cinética , Ligandos , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Células Sf9 , Resonancia por Plasmón de Superficie/instrumentación
7.
Cell Metab ; 25(5): 1147-1159.e10, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28467931

RESUMEN

The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK ß1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aminopiridinas/farmacología , Activadores de Enzimas/farmacología , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Indoles/farmacología , Aminopiridinas/uso terapéutico , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/uso terapéutico , Femenino , Hipoglucemiantes/uso terapéutico , Indoles/uso terapéutico , Hígado/efectos de los fármacos , Hígado/metabolismo , Macaca fascicularis , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo
8.
J Med Chem ; 59(17): 8068-81, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27490827

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Activadores de Enzimas/química , Indoles/química , Administración Oral , Adsorción , Animales , Cristalografía por Rayos X , Perros , Activadores de Enzimas/síntesis química , Activadores de Enzimas/farmacocinética , Activadores de Enzimas/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Indazoles/síntesis química , Indazoles/química , Indazoles/farmacología , Indoles/síntesis química , Indoles/farmacocinética , Indoles/farmacología , Inyecciones Intravenosas , Macaca fascicularis , Masculino , Modelos Moleculares , Conformación Proteica , Ratas
9.
Bioorg Med Chem Lett ; 26(8): 1993-6, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26965858

RESUMEN

Loss of LIPA activity leads to diseases such as Wolman's Disease and Cholesterol Ester Storage Disease. While it is possible to measure defects in LIPA protein levels, it is difficult to directly measure LIPA activity in cells. In order to measure LIPA activity directly we developed a LIPA specific activity based probe. LIPA is heavily glycosylated although it is unclear how glycosylation affects LIPA activity or function. Our probe is specific for a glycosylated form of LIPA in cells, although it labels purified LIPA regardless of glycosylation.


Asunto(s)
Sondas Moleculares/análisis , Sondas Moleculares/metabolismo , Esterol Esterasa/química , Esterol Esterasa/metabolismo , Glicosilación , Humanos , Simulación del Acoplamiento Molecular , Sondas Moleculares/síntesis química , Sondas Moleculares/química , Estructura Molecular
10.
Biochem J ; 473(5): 581-92, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26635351

RESUMEN

AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that serves as a pleotropic regulator of whole body energy homoeostasis. AMPK exists as a heterotrimeric complex, composed of a catalytic subunit (α) and two regulatory subunits (ß and γ), each present as multiple isoforms. In the present study, we compared the enzyme kinetics and allosteric modulation of six recombinant AMPK isoforms, α1ß1γ1, α1ß2γ1, α1ß2γ3, α2ß1γ1, α2ß2γ1 and α2ß2γ3 using known activators, A769662 and AMP. The α1-containing complexes exhibited higher specific activities and lower Km values for a widely used peptide substrate (SAMS) compared with α2-complexes. Surface plasmon resonance (SPR)-based direct binding measurements revealed biphasic binding modes with two distinct equilibrium binding constants for AMP, ADP and ATP across all isoforms tested. The α2-complexes were ∼25-fold more sensitive than α1-complexes to dephosphorylation of a critical threonine on their activation loop (pThr(172/174)). However, α2-complexes were more readily activated by AMP than α1-complexes. Compared with ß1-containing heterotrimers, ß2-containing AMPK isoforms are less sensitive to activation by A769662, a synthetic activator. These data demonstrate that ligand induced activation of AMPK isoforms may vary significantly based on their AMPK subunit composition. Our studies provide insights for the design of isoform-selective AMPK activators for the treatment of metabolic diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Adenosina Monofosfato/química , Regulación Alostérica , Compuestos de Bifenilo , Activación Enzimática , Activadores de Enzimas/química , Pruebas de Enzimas , Humanos , Isoenzimas/química , Cinética , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Pironas/química , Proteínas Recombinantes/química , Tiofenos/química
11.
Protein Expr Purif ; 110: 22-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25620107

RESUMEN

Lysosomal acid lipase (LAL) is a serine hydrolase which hydrolyzes cholesteryl ester and triglycerides delivered to the lysosomes into free cholesterol and free fatty acids. Mutations in the LAL gene (LIPA) result in accumulation of triglycerides and cholesterol esters in various tissues of the body, leading to pathological conditions such as Wolman's disease (WD) and cholesteryl ester storage disease (CESD). CESD patients homozygous for His295Tyr (H295Y) mutation have less than 5% of normal LAL activity. To shed light on the molecular basis for this loss-of-function phenotype, we have generated the recombinant H295Y enzyme and studied its biophysical and biochemical properties. No significant differences were observed in the expression levels or glycosylation patterns between the mutant and the wild type LAL. However, the H295Y mutant displayed only residual enzymatic activity (<5%) compared to the wild type. While wild type LAL is mostly a monomer at pH 5.0, the vast majority H295Y exists as a high molecular soluble aggregate. Besides, the H295Y mutant has a 20°C lower melting temperature compared to the wild type. Transient expression studies in WD fibroblasts showed that mutation of His295 to other amino acids resulted in a significant loss of enzymatic activity. A homology model of LAL revealed that His295 is located on an α-helix of the cap domain and could be important for tethering it to its core domain. The observed loss-of-function phenotype in CESD patients might arise from a combination of protein destabilization and the shift to a non-functional soluble aggregate.


Asunto(s)
Lisosomas/enzimología , Esterol Esterasa/genética , Enfermedad de Wolman/enzimología , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Ésteres del Colesterol/química , Ésteres del Colesterol/metabolismo , Clonación Molecular , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Glicosilación , Humanos , Cinética , Metabolismo de los Lípidos , Lisosomas/patología , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Plásmidos/química , Plásmidos/metabolismo , Agregado de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Células Sf9 , Spodoptera , Esterol Esterasa/aislamiento & purificación , Esterol Esterasa/metabolismo , Enfermedad de Wolman/genética , Enfermedad de Wolman/patología
12.
Structure ; 22(8): 1161-1172, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25066137

RESUMEN

AMP-activated protein kinase (AMPK) is a principal metabolic regulator affecting growth and response to cellular stress. Comprised of catalytic and regulatory subunits, each present in multiple forms, AMPK is best described as a family of related enzymes. In recent years, AMPK has emerged as a desirable target for modulation of numerous diseases, yet clinical therapies remain elusive. Challenges result, in part, from an incomplete understanding of the structure and function of full-length heterotrimeric complexes. In this work, we provide the full-length structure of the widely expressed α1ß1γ1 isoform of mammalian AMPK, along with detailed kinetic and biophysical characterization. We characterize binding of the broadly studied synthetic activator A769662 and its analogs. Our studies follow on the heels of the recent disclosure of the α2ß1γ1 structure and provide insight into the distinct molecular mechanisms of AMPK regulation by AMP and A769662.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/fisiología , Activación Enzimática/fisiología , Modelos Moleculares , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/metabolismo , Sitio Alostérico/genética , Compuestos de Bifenilo , Sistemas de Liberación de Medicamentos , Humanos , Cinética , Ligandos , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología , Pironas/metabolismo , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Tiofenos/metabolismo
13.
J Biol Chem ; 286(48): 41510-41519, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21953464

RESUMEN

Inhibition of acetyl-CoA carboxylases (ACCs), a crucial enzyme for fatty acid metabolism, has been shown to promote fatty acid oxidation and reduce body fat in animal models. Therefore, ACCs are attractive targets for structure-based inhibitor design, particularly the carboxyltransferase (CT) domain, which is the primary site for inhibitor interaction. We have cloned, expressed, and purified the CT domain of human ACC2 using baculovirus-mediated insect cell expression system. However, attempts to crystallize the human ACC2 CT domain have not been successful in our hands. Hence, we have been using the available crystal structure of yeast CT domain to design human ACC inhibitors. Unfortunately, as the selectivity of the lead series has increased against the full-length human enzyme, the potency against the yeast enzyme has decreased significantly. This loss of potency against the yeast enzyme correlated with a complete lack of binding of the human-specific compounds to crystals of the yeast CT domain. Here, we address this problem by converting nine key active site residues of the yeast CT domain to the corresponding human residues. The resulting humanized yeast ACC-CT (yCT-H9) protein exhibits biochemical and biophysical properties closer to the human CT domain and binding to human specific compounds. We report high resolution crystal structures of yCT-H9 complexed with inhibitors that show a preference for the human CT domain. These structures offer insights that explain the species selectivity of ACC inhibitors and may guide future drug design programs.


Asunto(s)
Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/química , Dominio Catalítico , Inhibidores Enzimáticos/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Acetil-CoA Carboxilasa/genética , Animales , Línea Celular , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Especificidad de la Especie , Spodoptera , Homología Estructural de Proteína , Relación Estructura-Actividad
14.
Protein Expr Purif ; 73(2): 189-97, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20451617

RESUMEN

AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine protein kinase that plays a central role in whole-body energy homeostasis. AMPK is a heterotrimeric enzyme with a catalytic (alpha) subunit and two regulatory (beta and gamma) subunits. The muscle-specific AMPK heterotrimeric complex (alpha2beta2gamma3) is involved in glucose and fat metabolism in skeletal muscle and therefore has emerged as an attractive target for drug development for diabetes and metabolic syndrome. To date, expression of recombinant full-length human AMPK alpha2beta2gamma3 has not been reported. Here we describe the expression, purification and biochemical characterization of functional full-length AMPK alpha2beta2gamma3 heterotrimeric complex using an Escherichia coli expression system. All three subunits of AMPK alpha2beta2gamma3 were transcribed as a single tricistronic transcript driven by the T7 RNA polymerase promoter, allowing spontaneous formation of the heterotrimeric complex in the bacterial cytosol. The self-assembled trimeric complex was purified from the cell lysate by nickel-ion chromatography using the hexahistidine tag fused exclusively at the N-terminus of the alpha 2 domain. The un-assembled beta 2 and gamma 3 domains were removed by extensive washing of the column. Further purification of the heterotrimer was performed using size exclusion chromatography. The final yield of the recombinant AMPK alpha2beta2gamma3 complex was 1.1mg/L culture in shaker flasks. The E. coli expressed enzyme was catalytically inactive after purification, but was activated in vitro by upstream kinases such as CaMKKbeta and LKB1. The kinase activity of activated AMPK alpha2beta2gamma3 complex was significantly enhanced by AMP (an allosteric activator) but not by thienopyridone A-769662, a known small molecule activator of AMPK. Mass spectrometric characterization of recombinant AMPK alpha2beta2gamma3 showed significant heterogeneity before and after activation that could potentially hamper crystallographic studies of this complex.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Escherichia coli/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/metabolismo , Compuestos de Bifenilo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/fisiología , Dominio Catalítico , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Escherichia coli/genética , Homeostasis , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Pironas/farmacología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Tiofenos/farmacología
15.
Plant Mol Biol ; 69(1-2): 81-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18839315

RESUMEN

In plants, lysine catabolism is thought to be controlled by a bifunctional enzyme, lysine ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH). Lysine is converted to saccharopine, through condensation with alpha-ketoglutarate, by LKR, and subsequently to glutamate and alpha-aminoadipate-delta-semialdehyde by SDH. To investigate lysine catabolism in maize kernels, we generated transgenic plants with suppressed LKR/SDH activity in either endosperm or embryo. We found that the suppression of LKR/SDH in endosperm induced an increase in free lysine in developing endosperm, which peaked at 32 days after pollination. At later stages of kernel development, most of the free lysine was found in the embryo along with an elevated level of saccharopine. By combining endosperm LKR/SDH suppression with embryo LKR/SDH suppression through crosses, the saccharopine level in embryo was reduced and resulted in higher lysine accumulation in mature kernels. These results reveal new insights into how free lysine level is regulated and distributed in developing maize kernels and demonstrate the possibility of engineering high lysine corn via the suppression of lysine catabolism.


Asunto(s)
Lisina/metabolismo , Zea mays/metabolismo , Secuencia de Bases , Western Blotting , Cartilla de ADN , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA